Does Hypoxia Prompt Fetal Brain-Sparing in the Absence of Fetal Growth Restriction?

. 2024 Nov 29 ; 73 (S2) : S487-S493.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39589298

Grantová podpora
R01 HD088590 NICHD NIH HHS - United States
R01 HL138181 NHLBI NIH HHS - United States

The fetus develops normally in a hypoxic environment but exaggerated hypoxia late in pregnancy is a worrisome sign often observed in hypertensive disorders of pregnancy, placental insufficiency, or fetal growth restriction (FGR). Serial fetal biometry and the cerebroplacental ratio (CPR, calculated as the middle cerebral artery [MCA] / the umbilical artery [UmbA] pulsatility indices [PI]), are commonly used to indicate fetal "brain sparing" resulting from exaggerated fetal hypoxia. But unclear is the extent to which a low CPR indicates pathology or is a physiological response for maintaining cerebral blood flow. We studied 31 appropriate for gestational age (AGA) pregnancies at low (LA, 1670 m) or high (HA, 2879 m) altitude, given the chronic hypoxia imposed by HA residence, and 54 LA women with a clinical diagnosis of FGR. At week 34, the MCA PI was lower in the LA-FGR than the LA-AGA group but lower still in the HA-AGA compared to either LA groups due to a trend toward higher end-diastolic velocity (EDV). We concluded that the lower MCA PI was likely due to greater cerebral vasodilation in the HA AGA group and an indication of physiological versus pathological fetal hypoxia. Future reporting of serial MCA and UmbA values and their determinants along with the CPR could improve our ability to distinguish between physiological and pathological fetal brain sparing. Keywords: Birth weight, Cerebroplacental ratio, Fetal physiology, HDP, High altitude.

Zobrazit více v PubMed

Jauniaux E, Gulbis B, GJ Burton, Physiological implications of the materno-fetal oxygen gradient in human early pregnancy. Reprod Biomed Online. 2003;7:250–253. doi: 10.1016/S1472-6483(10)61760-9. PubMed DOI

Burton GJ. Oxygen, the Janus gas; its effects on human placental development and function. J Anat. 2009;215:27–35. doi: 10.1111/j.1469-7580.2008.00978.x. PubMed DOI PMC

Lees CC, Romero R, Stampalija T, Dall'Asta A, DeVore GA, Prefumo F, Frusca T, et al. Clinical Opinion: The diagnosis and management of suspected fetal growth restriction: an evidence-based approach. Am J Obstet Gynecol. 2022;226:366–378. doi: 10.1016/j.ajog.2021.11.1357. PubMed DOI PMC

Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016;594:1215–1230. doi: 10.1113/JP271099. PubMed DOI PMC

Jensen GM, Moore LG. The effect of high altitude and other risk factors on birthweight: independent or interactive effects? Am J Public Health. 1997;87:1003–1007. doi: 10.2105/AJPH.87.6.1003. PubMed DOI PMC

Palmer SK, Zamudio S, Coffin C, Parker S, Stamm E, Moore LG. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol. 1992;80:1000–1006. PubMed

Chassen SS, Zemski-Berry K, Raymond-Whish S, Driver C, Hobbins JC, Powell TL. Altered cord blood lipid concentrations correlate with birth weight and doppler velocimetry of fetal vessels in human fetal growth restriction pregnancies. Cells. 2022;11:3110. doi: 10.3390/cells11193110. PubMed DOI PMC

Moore LG, Lorca RA, Gumina DL, Wesolowski SR, Reisz JA, Cioffi-Ragan D, Houck JA, et al. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia. Am J Physiol: Heart and Circ Physiol. 2024;327:H778–H792. doi: 10.1152/ajpheart.00193.2024. PubMed DOI PMC

Dogru S, Akkus F, Acar A. Cerebroplacental ratio and perinatal outcomes in mild-to-moderate idiopathic polyhydramnios cases. Int J Gynaecol Obstet. 2024:324. doi: 10.1002/ijgo.15556. PubMed DOI

Khalil AB. Thilaganathan, Role of uteroplacental and fetal Doppler in identifying fetal growth restriction at term. Best Pract Res Clin Obstet Gynaecol. 2017;38:38–47. doi: 10.1016/j.bpobgyn.2016.09.003. PubMed DOI

Moore LG, Young D, McCullough RE, Droma T, Zamudio S. Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am J Hum Biol. 2001;13:635–644. doi: 10.1002/ajhb.1102. PubMed DOI

Julian CG, Vargas E, Armaza JF, Wilson MJ, Niermeyer S, Moore LG. High-altitude ancestry protects against hypoxia-associated reductions in fetal growth. Arch Dis Child Fetal Neonatal Ed. 2007;92:F372–F377. doi: 10.1136/adc.2006.109579. PubMed DOI PMC

Soria R, Julian CG, Vargas E, Moore LG, Giussani DA. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res. 2013;74:633–638. doi: 10.1038/pr.2013.150. PubMed DOI

Dolma P, Angchuk PT, Jain V, Dadhwal V, Kular D, Williams DJ, Montgomery HE, Hillman SL. High-altitude population neonatal and maternal phenotypes associated with birthweight protection. Pediatr Res. 2022;91:137–142. doi: 10.1038/s41390-021-01593-5. PubMed DOI PMC

Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–339. doi: 10.1002/uog.15884. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...