Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31998345
PubMed Central
PMC6962234
DOI
10.3389/fpls.2019.01660
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, confocal microscopy, fluorescent probes, mechanical injury, wounding,
- Publikační typ
- časopisecké články MeSH
Mechanical injury or wounding in plants can be attributed to abiotic or/and biotic causes. Subsequent defense responses are either local, i.e. within or in the close vicinity of affected tissue, or systemic, i.e. at distant plant organs. Stress stimuli activate a plethora of early and late reactions, from electric signals induced within seconds upon injury, oxidative burst within minutes, and slightly slower changes in hormone levels or expression of defense-related genes, to later cell wall reinforcement by polysaccharides deposition, or accumulation of proteinase inhibitors and hydrolytic enzymes. In the current study, we focused on the production of reactive oxygen species (ROS) in wounded Arabidopsis leaves. Based on fluorescence imaging, we provide experimental evidence that ROS [superoxide anion radical (O2 •-) and singlet oxygen (1O2)] are produced following wounding. As a consequence, oxidation of biomolecules is induced, predominantly of polyunsaturated fatty acid, which leads to the formation of reactive intermediate products and electronically excited species.
Zobrazit více v PubMed
Bela K., Horvath E., Galle A., Szabados L., Tari I., Csiszar J. (2015). Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 176, 192–201. 10.1016/j.jplph.2014.12.014 PubMed DOI
Cifra M., Pospíšil P. (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B. 139, 2–10. 10.1016/j.jphotobiol.2014.02.009 PubMed DOI
Cramer G. R., Urano K., Delrot S., Pezzotti M., Shinozaki K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 11, 163. 10.1186/1471-2229-11-163 PubMed DOI PMC
Czarnocka W., Karpinski S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biol. Med. 122, 4–20. 10.1016/j.freeradbiomed.2018.01.011 PubMed DOI
Devasagayam T. P. A., Boloor K. K., Ramasarma T. (2003). Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J. Biochem. Biophys. 40 (5), 300–308. PubMed
Di Mascio P., Catalani L. H., Bechara E. J. (1992). Are dioxetanes chemiluminescent intermediates in lipoperoxidation? Free Radic. Biol. Med. 12 (6), 471–478. 10.1016/0891-5849(92)90100-u PubMed DOI
Dietz K. J., Mittler R., Noctor G. (2016). Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol. 171 (3), 1535–1539. 10.1104/pp.16.00938 PubMed DOI PMC
Foyer C. H., Shigeoka S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 (1), 93–100. 10.1104/pp.110.166181 PubMed DOI PMC
Foyer C. H., Lelandais M., Kunert K. J. (1994). Photooxidative stress in plants. Physiol. Plant. 92 (4), 696–717. 10.1111/j.1399-3054.1994.tb03042.x DOI
Garces H., Durzan D., Pedroso M. C. (2001). Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann. Bot. 87 (5), 567–574. 10.1006/anbo.2000.1356 DOI
Grant J. J., Loake G. J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124 (1), 21–29. 10.1104/pp.124.1.21 PubMed DOI PMC
Hideg E. (2008). A comparative study of fluorescent singlet oxygen probes in plant leaves. Cent. Eur. J. Biol. 3 (3), 273–284. 10.2478/s11535-008-0018-5 DOI
Jarvis R. P. (2011). Chloroplast Research in Arabidopsis. Methods Protoc. I 774, 1–374. 10.1007/978-1-61779-234-2 DOI
Johansson Jankanpaa H., Frenkel M., Zulfugarov I., Reichelt M., Krieger-Liszkay A., Mishra Y., et al. (2013). Non-photochemical quenching capacity in Arabidopsis thaliana affects herbivore behaviour. PloS One 8 (1), e53232. 10.1371/journal.pone.0053232 PubMed DOI PMC
Kasai S., Sugiura Y., Prasad A., Inoue K., Sato T., Honmo T., et al. (2019). Real-time imaging of photosynthetic oxygen evolution from spinach using LSI-based biosensor. Sci. Rep. 9, 10. 10.1038/s41598-019-48561-y PubMed DOI PMC
Kim C., Meskauskiene R., Apel K., Laloi C. (2008). No single way to understand singlet oxygen signalling in plants. EMBO Rep. 9 (5), 435–439. 10.1038/embor.2008.57 PubMed DOI PMC
Kochevar I. E. (2004). Singlet oxygen signaling: from intimate to global. Sci. STKE 2004 (221), pe7. 10.1126/stke.2212004pe7 PubMed DOI
Kreslavski V. D., Los D. A., Allakhverdiev S. I., Kuznetsov V. V. (2012). Signaling role of reactive oxygen species in plants under stress. Russian J. Plant Physiol. 59 (2), 141–154. 10.1134/S1021443712020057 DOI
Kumar A., Prasad A., Sedlářová M., Pospíšil P. (2018). Data on detection of singlet oxygen, hydroxyl radical and organic radical in Arabidopsis thaliana. Data In Brief 21, 2246–2252. 10.1016/j.dib.2018.11.033 PubMed DOI PMC
Kumar A., Prasad A., Sedlářová M., Pospíšil P. (2019). Organic radical imaging in plants: Focus on protein radicals. Free Radical Biol. Med. 130, 568–575. 10.1016/j.freeradbiomed.2018.10.428 PubMed DOI
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V. B., Vandepoele K., et al. (2011). ROS signaling: the new wave? Trends Plant Sci. 16 (6), 300–309. 10.1016/j.tplants.2011.03.007 PubMed DOI
Miyamoto S., Di Mascio P. (2014). “Lipid Hydroperoxides as a Source of Singlet Molecular Oxygen,” in Lipid Hydroperoxide-Derived Modification of Biomolecules (Springer). Ed. Kato Y., 3–20. 10.1007/978-94-007-7920-4_1 PubMed DOI
Miyamoto S., Martinez G. R., Medeiros M. H., Di Mascio P. (2003). Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements. J. Am. Chem. Soc. 125 (20), 6172–6179. 10.1021/ja029115o PubMed DOI
Miyamoto S., Ronsein G. E., Prado F. M., Uemi M., Correa T. C., Toma I. N., et al. (2007). Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life 59 (4-5), 322–331. 10.1080/15216540701242508 PubMed DOI
Miyamoto S., Martinez G. R., Medeiros M. H., Di Mascio P. (2014). Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B. 139, 24–33. 10.1016/j.jphotobiol.2014.03.028 PubMed DOI
Morker K. H., Roberts M. R. (2011). Light as both an input and an output of wound-induced reactive oxygen formation in Arabidopsis leaves. Plant Signal Behav. 6 (8), 1087–1089. 10.4161/psb.6.8.15823 PubMed DOI PMC
Orozco-Cardenas M., Ryan C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. United States America 96 (11), 6553–6557. 10.1073/pnas.96.11.6553 PubMed DOI PMC
Ortega-Villasante C., Buren S., Blazquez-Castro A., Baron-Sola A., Hernandez L. E. (2018). Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radical Biol. Med. 122, 202–220. 10.1016/j.freeradbiomed.2018.04.005 PubMed DOI
Pathak V., Prasad A., Pospíšil P. (2017). Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II. PloS One 12 (7), e0181732. 10.1371/journal.pone.0181732 PubMed DOI PMC
Prasad A., Pospíšil P. (2011). Linoleic acid-induced ultra-weak photon emission from chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PloS One 6 (7), e22345. 10.1371/journal.pone.0022345 PubMed DOI PMC
Prasad A., Pospíšil P. (2013). Towards the two-dimensional imaging of spontaneous ultra-weak photon emission from microbial, plant and animal cells. Sci. Rep. 3, 1211. 10.1038/srep01211 PubMed DOI PMC
Prasad A., Kumar A., Suzuki M., Kikuchi H., Sugai T., Kobayashi M., et al. (2015). Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. Front. Plant Sci. 6, 862. 10.3389/fpls.2015.00862 PubMed DOI PMC
Prasad A., Ferretti U., Sedlářová M., Pospíšil P. (2016). Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci. Rep. 10.1038/srep20094 PubMed DOI PMC
Prasad A., Kumar A., Matsuoka R., Takahashi A., Fujii R., Sugiura Y., et al. (2017. a). Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. Peerj 5, e3050. 10.7717/peerj.3050 PubMed DOI PMC
Prasad A., Sedlářová M., Kale R. S., Pospíšil P. (2017. b). Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Sci. Rep. 7 (1), 9831. 10.1038/s41598-017-09758-1 PubMed DOI PMC
Prasad A., Sedlářová M., Pospíšil P. (2018). Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 8 (1), 13685. 10.1038/s41598-018-31638-5 PubMed DOI PMC
Pospíšil P., Prasad A., Rác M. (2019). Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules 9 (7), 258. 10.3390/biom9070258 PubMed DOI PMC
Ragas X., Jimenez-Banzo A., Sanchez-Garcia D., Batllori X., Nonell S. (2009). Singlet oxygen photosensitisation by the fluorescent probe singlet oxygen sensor green. Chem. Commun. (Camb) (20), 2920–2922. 10.1039/b822776d PubMed DOI
Rehrig E. M., Appel H. M., Jones A. D., Schultz J. C. (2014). Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores. Front. Plant Sci. 5, 407. 10.3389/fpls.2014.00407 PubMed DOI PMC
Reymond P., Farmer E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. In Plant Biol. 1 (5), 404–411. 10.1016/s1369-5266(98)80264-1 PubMed DOI
Reymond P., Weber H., Damond M., Farmer E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12 (5), 707–720. 10.2307/3870996 PubMed DOI PMC
Roach T., Colville L., Beckett R. P., Minibayeva F. V., Havaux M., Kranner I. (2015). A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. Phytochemistry 112, 130–138. 10.1016/j.phytochem.2014.06.003 PubMed DOI
Saeidfirozeh H., Shafiekhani A., Cifra M., Masoudi A. A. (2018). Endogenous chemiluminescence from germinating arabidopsis thaliana seeds. Sci. Rep. 8, 10. 10.1038/s41598-018-34485-6 PubMed DOI PMC
Savatin D. V., Gramegna G., Modesti V., Cervone F. (2014). Wounding in the plant tissue: the defense of a dangerous passage. Front. Plant Sci. 5, 470. 10.3389/fpls.2014.00470 PubMed DOI PMC
Sedlářová M., Luhová L. (2017). Re-Evaluation of imaging methods of reactive oxygen and nitrogen species in plants and fungi: influence of cell wall composition. Front. Physiol. 8, 826. 10.3389/fphys.2017.00826 PubMed DOI PMC
Sedlářová M., Petřivalský M., Piterkova J., Luhová L., Kocirova J., Lebeda A. (2011). Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur. J. Plant Pathol. 129 (2), 267–280. 10.1007/s10658-010-9626-9 DOI
Slesak I., Libik M., Karpinska B., Karpinski S., Miszalski Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Polonica 54 (1), 39–50. 10.18388/abp.2007_3267 PubMed DOI
Smirnoff N. (2000). Ascorbate biosynthesis and function in photoprotection. Philos. Trans. R. Soc. Lond B. Biol. Sci. 355 (1402), 1455–1464. 10.1098/rstb.2000.0706 PubMed DOI PMC
Soh N., Ariyoshi T., Fukaminato T., Nakano K., Irie M., Imato T. (2006). Novel fluorescent probe for detecting hydroperoxides with strong emission in the visible range. Bioorg. Med. Chem. Lett. 16 (11), 2943–2946. 10.1016/j.bmcl.2006.02.078 PubMed DOI
Soh N., Ariyoshi T., Fukaminato T., Nakajima H., Nakano K., Imato T. (2007). Swallow-tailed perylene derivative: a new tool for fluorescent imaging of lipid hydroperoxides. Organic. Biomol. Chem. 5 (23), 3762–3768. 10.1039/b713223a PubMed DOI
Suzuki N., Mittler R. (2012). Reactive oxygen species-dependent wound responses in animals and plants. Free Radical Biol. Med. 53 (12), 2269–2276. 10.1016/j.freeradbiomed.2012.10.538 PubMed DOI
Taylor J. E., Hatcher P. E., Paul N. D. (2004). Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J. Exp. Bot. 55 (395), 159–168. 10.1093/jxb/erh053 PubMed DOI
Triantaphylides C., Havaux M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14 (4), 219–228. 10.1016/j.tplants.2009.01.008 PubMed DOI
Verma V., Ravindran P., Kumar P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16 (86). 10.1186/s12870-016-0771-y PubMed DOI PMC
Waszczak C., Carmody M., Kangasjarvi J. (2018). “Reactive Oxygen Species in Plant Signaling,” in Annual Review of Plant Biology, vol. 692018 . Ed. Merchant S. S., 209–236. 10.1146/annurev-arplant-042817-040322 PubMed DOI
Wohlgemuth H., Mittelstrass K., Kschieschan S., Bender J., Weigel H. J., Overmyer K., et al. (2002). Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ. 25 (6), 717–726. 10.1046/j.1365-3040.2002.00859.x DOI
Wojtala A., Bonora M., Malinska D., Pinton P., Duszynski J., Wieckowski M. R. (2014. a). “Methods to monitor ROS production by fluorescence microscopy and fluorometry” in Conceptual Background and Bioenergetic/Mitochondrial Aspects of Oncometabolism. Eds. Galuzzi, L., Kroemer G. Vol. 542, 243–262. PubMed
Wojtala A., Bonora M., Malinska D., Pinton P., Duszynski J., Wieckowski M. R. (2014. b). Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol. 542, 243–262. 10.1016/B978-0-12-416618-9.00013-3 PubMed DOI
Yadav D. K., Pospíšil P. (2012). Evidence on the formation of singlet oxygen in the donor side photoinhibition of photosystem II: EPR spin-trapping study. PloS One 7 (9), e45883. 10.1371/journal.pone.0045883 PubMed DOI PMC
Yamanaka K., Saito Y., Sakiyama J., Ohuchi Y., Oseto F., Noguchi N. (2012). A novel fluorescent probe with high sensitivity and selective detection of lipid hydroperoxides in cells. Rsc Adv. 2 (20), 7894–7900. 10.1039/C2RA20816D DOI
Zhang Y. F., Dai M. H., Yuan Z. H. (2018). Methods for the detection of reactive oxygen species. Anal. Methods 10 (38), 4625–4638. 10.1039/C8AY01339J DOI
Zielonka J., Kalyanaraman B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radical Biol. Med. 48 (8), 983–1001. 10.4161/psb.6.8.15823 PubMed DOI PMC
Bioactive Compounds and Their Impact on Protein Modification in Human Cells
Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II