• This record comes from PubMed

Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms

. 2018 Sep 12 ; 8 (1) : 13685. [epub] 20180912

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30209276
PubMed Central PMC6135792
DOI 10.1038/s41598-018-31638-5
PII: 10.1038/s41598-018-31638-5
Knihovny.cz E-resources

Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.

See more in PubMed

Triantaphylides C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 2009;14:219–228. doi: 10.1016/j.tplants.2009.01.008. PubMed DOI

Fischer BB, Hideg E, Krieger-Liszkay A. Production, Detection, and Signaling of Singlet Oxygen in Photosynthetic Organisms. Antioxidants & Redox Signaling. 2013;18:2145–2162. doi: 10.1089/ars.2012.5124. PubMed DOI

Telfer A. Singlet Oxygen Production by PSII Under Light Stress: Mechanism, Detection and the Protective role of beta-Carotene. Plant and Cell Physiology. 2014;55:1216–1223. doi: 10.1093/pcp/pcu040. PubMed DOI PMC

Pospíšil P. Production of Reactive Oxygen Species by Photo system II as a Response to Light and TemperatureStress. Frontiers in Plant Science. 2016;7:12. PubMed PMC

Pospíšil P, Prasad A. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. Journal of Photochemistry and Photobiology B-Biology. 2014;137:39–48. doi: 10.1016/j.jphotobiol.2014.04.025. PubMed DOI

Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI

Vass I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta. 2012;1817:209–217. doi: 10.1016/j.bbabio.2011.04.014. PubMed DOI

Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI

Flors C, et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J Exp Bot. 2006;57:1725–1734. doi: 10.1093/jxb/erj181. PubMed DOI

Prasad A, Ferretti U, Sedlářová M, Pospíšil P. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Scientific Reports. 2016;6:20094. doi: 10.1038/srep20094. PubMed DOI PMC

Prasad, A., Sedlářová, M., Kale, R. S. & Pospíšil, P. Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Scientific Reports7, 10.1038/s41598-017-09758-1 (2017). PubMed PMC

Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI

Laloi, C. & Havaux, M. Key players of singlet oxygen-induced cell death in plants. Frontiers in Plant Science6, 10.3389/fpls.2015.00039 (2015). PubMed PMC

Gollan PJ, Tikkanen M, Aro E-M. Photosynthetic light reactions: integral to chloroplast retrograde signalling. Current Opinion in Plant Biology. 2015;27:180–191. doi: 10.1016/j.pbi.2015.07.006. PubMed DOI

Aro EM, et al. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany. 2005;56:347–356. doi: 10.1093/jxb/eri041. PubMed DOI

Triantaphylides C, et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology. 2008;148:960–968. doi: 10.1104/pp.108.125690. PubMed DOI PMC

Pospíšil P, Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochimica Et Biophysica Acta-General Subjects. 2017;1861:457–466. doi: 10.1016/j.bbagen.2016.10.005. PubMed DOI

Mattila H, Khorobrykh S, Havurinne V, Tyystjarvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. Journal of Photochemistry and Photobiology B-Biology. 2015;152:176–214. doi: 10.1016/j.jphotobiol.2015.10.001. PubMed DOI

Koh E, Fluhr R. Singlet oxygen detection in biological systems: Uses and limitations. Plant Signaling & Behavior. 2016;11:5. PubMed PMC

Hideg E, Spetea C, Vass I. Singlet Oxygen Production In Thylakoid Membranes During Photoinhibition As Detected by Epr Spectroscopy. Photosynthesis Research. 1994;39:191–199. doi: 10.1007/BF00029386. PubMed DOI

Krieger A, Rutherford AW, Vass I, Hideg E. Relationship between activity, D1 loss, and Mn binding in photoinhibition of photosystem II. Biochemistry. 1998;37:16262–16269. doi: 10.1021/bi981243v. PubMed DOI

Yadav, D. K. & Pospíšil, P. Evidence on the Formation of Singlet Oxygen in the Donor Side Photoinhibition of Photosystem II: EPR Spin-Trapping Study. Plos One7, 10.1371/journal.pone.0045883 (2012). PubMed PMC

Hideg E. A comparative study of fluorescent singlet oxygen probes in plant leaves. Central European Journal of Biology. 2008;3:273–284.

Hideg E, Kalai T, Kos PB, Asada K, Hideg K. Singlet oxygen in plants- Its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochemistry and Photobiology. 2006;82:1211–1218. doi: 10.1562/2006-02-06-RA-797. PubMed DOI

Ragas, X., Jimenez-Banzo, A., Sanchez-Garcia, D., Batllori, X. & Nonell, S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green (R). Chemical Communications, 2920–2922, 10.1039/b822776d (2009). PubMed

Gollmer A, et al. Singlet Oxygen Sensor Green (R): Photochemical Behavior in Solution and in a Mammalian Cell. Photochemistry and Photobiology. 2011;87:671–679. doi: 10.1111/j.1751-1097.2011.00900.x. PubMed DOI

Kim S, Fujitsuka M, Majima T. Photochemistry of Singlet Oxygen Sensor Green. Journal of Physical Chemistry B. 2013;117:13985–13992. doi: 10.1021/jp406638g. PubMed DOI

Mor A, et al. Singlet Oxygen Signatures Are Detected Independent of Light or Chloroplasts in Response to Multiple Stresses. Plant Physiology. 2014;165:249–261. doi: 10.1104/pp.114.236380. PubMed DOI PMC

Pedersen SK, et al. Aarhus Sensor Green: A Fluorescent Probe for Singlet Oxygen. Journal of Organic Chemistry. 2014;79:3079–3087. doi: 10.1021/jo500219y. PubMed DOI

Frausto F, Thomas SW. Ratiometric Singlet Oxygen Detection in Water Using Acene-Doped Conjugated Polymer Nanoparticles. Acs Applied Materials & Interfaces. 2017;9:15768–15775. doi: 10.1021/acsami.7b02034. PubMed DOI

Erbas-Cakmak S, Akkaya EU. Toward Singlet Oxygen Delivery at a Measured Rate: A Self-Reporting Photosensitizer. Organic Letters. 2014;16:2946–2949. doi: 10.1021/ol501084n. PubMed DOI

Tang CY, et al. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen. Int J Mol Sci. 2016;17:219. doi: 10.3390/ijms17020219. PubMed DOI PMC

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology. 1979;111:1–61.

Prasad A, Pospíšil P. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes. Plos One. 2011;6:e22345. doi: 10.1371/journal.pone.0022345. PubMed DOI PMC

Sedlářová M, et al. Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. European Journal of Plant Pathology. 2011;129:267–280. doi: 10.1007/s10658-010-9626-9. DOI

Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chemical Society Reviews. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI

Hideg, E. & Ayaydin, F. In Plant Image Analysis: Fundamentals and Applications 265–277 (Crc Press-Taylor & Francis Group, 2015).

Sedlářová M, Luhová L. Re-Evaluation of Imaging Methods of Reactive Oxygen and Nitrogen Species in Plants and Fungi: Influence of Cell Wall Composition. Frontiers in Physiology. 2017;8:7. PubMed PMC

Probes, M. Product information, http://probes.invitrogen.com/media/pis/mp36002.pdf?id=;mp36002. (2014).

Shen Y, et al. Indirect imaging of singlet oxygen generation from a single cell. Laser Physics Letters. 2011;8:232–238. doi: 10.1002/lapl.201010113. DOI

Sinha RK, Komenda J, Knoppova J, Sedlářová M, Pospíšil P. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803. Plant Cell and Environment. 2012;35:806–818. doi: 10.1111/j.1365-3040.2011.02454.x. PubMed DOI

Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection. Journal of Biological Chemistry. 2007;282:35056–35068. doi: 10.1074/jbc.M704729200. PubMed DOI

Alboresi A, et al. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. Bmc Plant Biology. 2011;11:22. doi: 10.1186/1471-2229-11-62. PubMed DOI PMC

Ramel F, et al. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiology. 2012;158:1267–1278. doi: 10.1104/pp.111.182394. PubMed DOI PMC

Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll Triplet Quenching and Photoprotection in the Higher Plant Monomeric Antenna Protein Lhcb5. Journal of Physical Chemistry B. 2013;117:11337–11348. doi: 10.1021/jp402977y. PubMed DOI

Shumbe L, et al. Singlet Oxygen-Induced Cell Death in Arabidopsis under High-Light Stress Is Controlled by OXI1 Kinase. Plant Physiology. 2016;170:1757–1771. PubMed PMC

Rehman AU, Cser K, Sass L, Vass I. Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. Biochimica Et Biophysica Acta-Bioenergetics. 2013;1827:689–698. doi: 10.1016/j.bbabio.2013.02.016. PubMed DOI

Rehman AU, et al. Symbiodinium sp cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytologist. 2016;212:472–484. doi: 10.1111/nph.14056. PubMed DOI

Jurgens UJ, Weckesser J. Polysaccharide Covalently Linked to the Peptidoglycan of the Cyanobacterium Synechocystic Sp Strain-Pcc6714. Journal of Bacteriology. 1986;168:568–573. doi: 10.1128/jb.168.2.568-573.1986. PubMed DOI PMC

Foster JS, Havemann SA, Singh AK, Sherman LA. Role of mrgA in peroxide and light stress in the cyanobacterium Synechocystis sp PCC 6803. Fems Microbiology Letters. 2009;293:298–304. doi: 10.1111/j.1574-6968.2009.01548.x. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...