Characterization of Protein Radicals in Arabidopsis

. 2019 ; 10 () : 958. [epub] 20190813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31456690

Oxidative modification of proteins in photosystem II (PSII) exposed to high light has been studied for a few decades, but the characterization of protein radicals formed by protein oxidation is largely unknown. Protein oxidation is induced by the direct reaction of proteins with reactive oxygen species known to form highly reactive protein radicals comprising carbon-centered (alkyl) and oxygen-centered (peroxyl and alkoxyl) radicals. In this study, protein radicals were monitored in Arabidopsis exposed to high light by immuno-spin trapping technique based on the detection of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) nitrone adducts using the anti-DMPO antibody. Protein radicals were imaged in Arabidopsis leaves and chloroplasts by confocal laser scanning microscopy using fluorescein conjugated with the anti-DMPO antibody. Characterization of protein radicals by standard blotting techniques using PSII protein specific antibodies shows that protein radicals are formed on D1, D2, CP43, CP47, and Lhcb3 proteins. Protein oxidation reflected by the appearance/disappearance of the protein bands reveals that formation of protein radicals was associated with protein fragmentation (cleavage of the D1 peptide bonds) and aggregation (cross-linking with another PSII subunits). Characterization of protein radical formation is important for better understating of the mechanism of oxidative modification of PSII proteins under high light.

Zobrazit více v PubMed

Aro E. M., Hundal T., Carlberg I., Andersson B. (1990). Invitro studies on light-induced inhibition of photosystem-ii and d1-protein degradation at low-temperatures. Biochimica Et Biophysica Acta 1019 269–275. 10.1016/0005-2728(90)90204-h DOI

Aro E. M., Virgin I., Andersson B. (1993). Photoinhibition of Photosystem Iinactivation, I., protein damage and turnover. Biochim. Biophys. Acta. 1143 113–134. 10.1016/0005-2728(93)90134-2 PubMed DOI

Barbato R., Friso G., Ponticos M., Barber J. (1995). Characterization of the light-induced cross-linking of the α-subunit of cytochrome b559 and the D1 protein in isolated photosystem-ii reaction centers. J. Biol. Chem. 270 24032–24037. 10.1074/jbc.270.41.24032 PubMed DOI

Barbato R., Frizzo A., Friso G., Rigoni F., Giacometti G. M. (1992a). Photoinduced degradation of the d1 protein in isolated thylakoids and various photosystem-ii particles after donor-site inactivations - detection of a C-terminal 16 Kda fragment. FEBS Lett. 304 136–140. 10.1016/0014-5793(92)80604-f PubMed DOI

Barbato R., Friso G., Rigoni F., Frizzo A., Giacometti G. M. (1992b). Characterization of a 41 kDa photoinhibition adduct in isolated photosystem II reaction centres. FEBS Lett. 309 165–169. 10.1016/0014-5793(92)81087-3 PubMed DOI

Barber J. (1998). Photosystem two. Biochim. Biophys. Acta. 1365 269–277. PubMed

Brunelle J. L., Green R. (2014). Chapter thirteen - coomassie blue staining. Methods Enzymol. 541 161–167. PubMed

Casazza A. P., Tarantino D., Soave C. (2001). Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 68 175–180. PubMed

Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90 856–867. 10.1111/tpj.13299 PubMed DOI

Davies M. J. (2016). Protein oxidation and peroxidation. Biochem. J. 473 805–825. 10.1042/bj20151227 PubMed DOI PMC

Dietz K. J., Turkan I., Krieger-Liszkay A. (2016). Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171 1541–1550. 10.1104/pp.16.00375 PubMed DOI PMC

Edelman M., Mattoo A. K. (2008). D1-protein dynamics in photosystem II: the lingering enigma. Photosynth. Res. 98 609–620. 10.1007/s11120-008-9342-x PubMed DOI

Fischer B. B., Hideg E., Krieger-Liszkay A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Anti. Redox Signal 18 2145–2162. 10.1089/ars.2012.5124 PubMed DOI

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M. (2012). Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51 6371–6377. 10.1021/bi300650n PubMed DOI PMC

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M. (2013). Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. Plos One 8:7. 10.1371/journal.pone.0058042 PubMed DOI PMC

Gomez-Mejiba S. E., Zhai Z. L., Della-Vedova M. C., Munoz M. D., Chatterjee S., Towner R. A., et al. (2014). Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim. Biophys. Acta Gen. Subj. 1840 722–729. 10.1016/j.bbagen.2013.04.039 PubMed DOI PMC

Henmi T., Yamasaki H., Sakuma S., Tomokawa Y., Tamura N., Shen J. R. (2003). Dynamic interaction between the D1 protein, CP43 and OEC33 at the lumenal side of photosystem II in spinach chloroplasts: evidence from light-induced cross-linking of the proteins in the donor-side photoinhibition. Plant Cell Physiol. 44 451–456. 10.1093/pcp/pcg049 PubMed DOI

Ishikawa Y., Nakatani E., Henmi T., Ferjani A., Harada Y., Tamura N., et al. (1999). Turnover of the aggregates and cross-linked products of the D1 protein generated by acceptor-side photoinhibition of photosystem II. Biochim. Biophys. Acta. 1413 147–158. 10.1016/s0005-2728(99)00093-6 PubMed DOI

Janik E., Bednarska J., Sowinski K., Luchowski R., Zubik M., Grudzinski W. (2017). Light-induced formation of dimeric LHCII. Photosynth Res. 132 265–276. 10.1007/s11120-017-0387-6 PubMed DOI PMC

Janik E., Bednarska J., Zubik M., Puzio M., Luchowski R., Grudzinski W., et al. (2013). Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell 25 2155–2170. 10.1105/tpc.113.113076 PubMed DOI PMC

Kale R., Hebert A. E., Frankel L. K., Sallans L., Bricker T. M., Pospíšil P. (2017). Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc. Natl. Acad. Sci. U. S. A. 114 2988–2993. 10.1073/pnas.1618922114 PubMed DOI PMC

Komenda J., Kuviková S., Lupínková L., Masojídek J. (2006). Biogenesis and Structural Dynamics of the Photosystem II Complex. Berlin: Springer.

Kumar A., Prasad A., Sedlářová M., Pospíšil P. (2018). Data on detection of singlet oxygen, hydroxyl radical and organic radical in Arabidopsis thaliana. Data Brief 21 2246–2252. 10.1016/j.dib.2018.11.033 PubMed DOI PMC

Kumar A., Prasad A., Sedlářová M., Pospíšil P. (2019). Organic radical imaging in plants: focus on protein radicals. Free Radic. Biol. Med. 130 568–575. 10.1016/j.freeradbiomed.2018.10.428 PubMed DOI

Laloi C., Havaux M. (2015). Key players of singlet oxygen-induced cell death in plants. Front. Plant Sci. 6:39. 10.3389/fpls.2015.00039 PubMed DOI PMC

Lupínková L., Komenda J. (2004). Oxidative modifications of the photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem. Photobiol. 79 152–162. 10.1111/j.1751-1097.2004.tb00005.x PubMed DOI

Mason R. P. (2016). Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox. Biol. 8 422–429. 10.1016/j.redox.2016.04.003 PubMed DOI PMC

Mattila H., Khorobrykh S., Havurinne V., Tyystjarvi E. (2015). Reactive oxygen species: reactions and detection from photosynthetic tissues. J. photochem. Photobiol. B Biol. 152(Pt B), 176–214. 10.1016/j.jphotobiol.2015.10.001 PubMed DOI

Mittler R. (2017). ROS are good. Trends Plant Sci. 22 11–19. 10.1016/j.tplants.2016.08.002 PubMed DOI

Moan J., Wold E. (1979). Detection of singlet oxygen production by ESR. Nature 279 450–451. 10.1038/279450a0 PubMed DOI

Munoz M. D., Gutierrez L. J., Delignat S., Russick J., Mejiba S. E. G., Lacroix-Desmazes S., et al. (2019). The nitrone spin trap 5,5-dimethyl-1-pyrroline N -oxide binds to toll -like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling. Biochimica Et Biophysica Acta Molecular Basis of Disease 1865 1152–1159. 10.1016/j.bbadis.2019.01.005 PubMed DOI

Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 1767 414–421. 10.1016/j.bbabio.2006.11.019 PubMed DOI

Pospíšil P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta. 1817 218–231. 10.1016/j.bbabio.2011.05.017 PubMed DOI

Pospíšil P. (2014). The role of metals in production and scavenging of reactive oxygen species in photosystem II. Plant Cell Physiol. 55 1224–1232. 10.1093/pcp/pcu053 PubMed DOI

Pou S., Ramos C. L., Gladwell T., Renks E., Centra M., Young D., et al. (1994). A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical. Anal. Biochem. 217 76–83. 10.1006/abio.1994.1085 PubMed DOI

Prasad A., Sedlářová M., Pospíšil P. (2018). Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 8:13685. 10.1038/s41598-018-31638-5 PubMed DOI PMC

Schagger H. (2006). Tricine-SDS-PAGE. Nat. Protoc. 1 16–22. 10.1038/nprot.2006.4 PubMed DOI

Schmitt F. J., Renger G., Friedrich T., Kreslavski V. D., Zharmukhamedov S. K., Los D. A., et al. (2014). Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta. 1837 835–848. 10.1016/j.bbabio.2014.02.005 PubMed DOI

Seigneurin-Berny D., Salvi D., Joyard J., Rolland N. (2008). Purification of intact chloroplasts from Arabidopsis and spinach leaves by isopycnic centrifugation. Curr. Protocol. Cell Biol. 40 3.30.1–3.30.14. 10.1002/0471143030.cb0330s40 PubMed DOI

Shipton C. A., Barber J. (1991). Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc. Natl. Acad. Sci. U. S. A. 88 6691–6695. 10.1073/pnas.88.15.6691 PubMed DOI PMC

Telfer A. (2014). Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell Physiol. 55 1216–1223. 10.1093/pcp/pcu040 PubMed DOI PMC

Weisz D. A., Gross M. L., Pakrasi H. B. (2017). Reactive oxygen species leave a damage trail that reveals water channels in photosystem II. Sci. Adv. 3:eaao3013. 10.1126/sciadv.aao3013 PubMed DOI PMC

Yamamoto Y. (2001). Quality control of photosystem II. Plant Cell Physiol. 42 121–128. 10.1093/pcp/pce022 PubMed DOI

Yamamoto Y., Aminaka R., Yoshioka M., Khatoon M., Komayama K., Takenaka D., et al. (2008). Quality control of photosystem II: impact of light and heat stresses. Photosynth Res. 98 589–608. 10.1007/s11120-008-9372-4 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...