Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes

. 2021 Sep 15 ; 22 (18) : . [epub] 20210915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576127

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Free radical-mediated activation of inflammatory macrophages remains ambiguous with its limitation to study within biological systems. U-937 and HL-60 cell lines serve as a well-defined model system known to differentiate into either macrophages or dendritic cells in response to various chemical stimuli linked with reactive oxygen species (ROS) production. Our present work utilizes phorbol 12-myristate-13-acetate (PMA) as a stimulant, and factors such as concentration and incubation time were considered to achieve optimized differentiation conditions. ROS formation likely hydroxyl radical (HO●) was confirmed by electron paramagnetic resonance (EPR) spectroscopy combined with confocal laser scanning microscopy (CLSM). In particular, U-937 cells were utilized further to identify proteins undergoing oxidation by ROS using anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibodies. Additionally, the expression pattern of NADPH Oxidase 4 (NOX4) in relation to induction with PMA was monitored to correlate the pattern of ROS generated. Utilizing macrophages as a model system, findings from the present study provide a valuable source for expanding the knowledge of differentiation and protein expression dynamics.

Zobrazit více v PubMed

Luan Y.-Y., Dong N., Xie M., Xiao X.-Z., Yao Y.-M. The Significance and Regulatory Mechanisms of Innate Immune Cells in the Development of Sepsis. J. Interf. Cytokine Res. 2014;34:2–15. doi: 10.1089/jir.2013.0042. PubMed DOI PMC

Liggett L.A., Sankaran V.G. Unraveling Hematopoiesis through the Lens of Genomics. Cell. 2020;182:1384–1400. doi: 10.1016/j.cell.2020.08.030. PubMed DOI PMC

Pennington K.N., Taylor J.A., Bren G.D., Paya C.V. IκB Kinase-Dependent Chronic Activation of NF-κB Is Necessary for p21 WAF1/Cip1 Inhibition of Differentiation-Induced Apoptosis of Monocytes. Mol. Cell. Biol. 2001;21:1930–1941. doi: 10.1128/MCB.21.6.1930-1941.2001. PubMed DOI PMC

Pagliara P., Lanubile R., Dwikat M., Abbro L., Dini L. Differentiation of monocytic U937 cells under static magnetic field exposure. Eur. J. Histochem. 2005;49:75–86. doi: 10.4081/930. PubMed DOI

Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI

Prasad A., Sedlářová M., Balukova A., Ovsii A., Rác M., Křupka M., Kasai S., Pospíšil P. Reactive Oxygen Species Imaging in U937 Cells. Front. Physiol. 2020;11:552569. doi: 10.3389/fphys.2020.552569. PubMed DOI PMC

Prasad A., Kikuchi H., Inoue K.Y., Suzuki M., Sugiura Y., Sugai T., Tomonori A., Tada M., Kobayashi M., Matsue T., et al. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front. Physiol. 2016;7 doi: 10.3389/fphys.2016.00109. PubMed DOI PMC

Chun E.M., Park Y.J., Kang H.S., Cho H.M., Jun D.Y., Kim Y.H. Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells. J. Leukoc. Biol. 2001;69:645–650. PubMed

Yamamoto T., Sakaguchi N., Hachiya M., Nakayama F., Yamakawa M., Akashi M. Role of catalase in monocytic differentiation of U937 cells by TPA: Hydrogen peroxide as a second messenger. Leukemia. 2008;23:761–769. doi: 10.1038/leu.2008.353. PubMed DOI

Zamani F., Shahneh F.Z., Aghebati-Maleki L., Baradaran B. Induction of CD14 Expression and Differentiation to Monocytes or Mature Macrophages in Promyelocytic Cell Lines: New Approach. Adv. Pharm. Bull. 2013;3:329–332. doi: 10.5681/apb.2013.053. PubMed DOI PMC

Mendoza-Coronel E., Castañón-Arreola M. Comparative evaluation ofin vitrohuman macrophage models for mycobacterial infection study. Pathog. Dis. 2016;74:ftw052. doi: 10.1093/femspd/ftw052. PubMed DOI

Lund M.E., To J., O’Brien B.A., Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J. Immunol. Methods. 2016;430:64–70. doi: 10.1016/j.jim.2016.01.012. PubMed DOI

Kikuchi H., Prasad A., Matsuoka R., Aoyagi S., Matsue T., Kasai S. Scanning Electrochemical Microscopy Imaging during Respiratory Burst in Human Cell. Front. Physiol. 2016;7:25. doi: 10.3389/fphys.2016.00025. PubMed DOI PMC

Robinson J.M. Reactive oxygen species in phagocytic leukocytes. Histochem. Cell Biol. 2008;130:281–297. doi: 10.1007/s00418-008-0461-4. PubMed DOI PMC

Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI

Pospíšil P., Prasad A., Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC

Gutteridge J.M.C., Halliwell B. Free Radicals and Antioxidants in the Year 2000: A Historical Look to the Future. Ann. N. Y. Acad. Sci. 2006;899:136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x. PubMed DOI

Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.

Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC

Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC

Schieber M., Chandel N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Hawkins C.L., Davies M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta. 2001;1504:196–219. doi: 10.1016/S0005-2728(00)00252-8. PubMed DOI

Hawkins C.L., Davies M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019;294:19683–19708. doi: 10.1074/jbc.REV119.006217. PubMed DOI PMC

Dean R.T., Fu S., Stocker R., Davies M. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 1997;324:1–18. doi: 10.1042/bj3240001. PubMed DOI PMC

Berlett B.S., Stadtman E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997;272:20313–20316. doi: 10.1074/jbc.272.33.20313. PubMed DOI

Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI

Di Mascio P., Martinez G.R., Miyamoto S., Ronsein G.E., Medeiros M.H.G., Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI

Kumar A., Prasad A., Sedlářová M., Pospíšil P. Organic radical imaging in plants: Focus on protein radicals. Free Radic. Biol. Med. 2019;130:568–575. doi: 10.1016/j.freeradbiomed.2018.10.428. PubMed DOI

Kumar A., Prasad A., Sedlářová M., Pospíšil P. Characterization of Protein Radicals in Arabidopsis. Front. Physiol. 2019;10:958. doi: 10.3389/fphys.2019.00958. PubMed DOI PMC

Mason R.P. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic. Biol. Med. 2004;36:1214–1223. doi: 10.1016/j.freeradbiomed.2004.02.077. PubMed DOI

Ramirez D.C., Mason R.P. Immuno-Spin Trapping: Detection of Protein-Centered Radicals. Curr. Protoc. Toxicol. 2005;24:17.7.1–17.7.18. doi: 10.1002/0471140856.tx1707s24. PubMed DOI

Muñoz M.D., Gutierrez L.J., Delignat S., Russick J., Mejiba S.E.G., Lacroix-Desmazes S., Enriz R.D., Ramirez D.C., Gomez S.E., Enriz D.R. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide binds to toll-like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2019;1865:1152–1159. doi: 10.1016/j.bbadis.2019.01.005. PubMed DOI

Augustyniak E., Adam A., Wojdyla K., Rogowska-Wrzesinska A., Willetts R., Korkmaz A., Atalay M., Weber D., Grune T., Borsa C., et al. Validation of protein carbonyl measurement: A multi-centre study. Redox Biol. 2015;4:149–157. doi: 10.1016/j.redox.2014.12.014. PubMed DOI PMC

Verhoeckx K.C.M., Bijlsma S., de Groene E.M., Witkamp R.F., van der Greef J., Rodenburg R.J.T. A combination of proteomics, principal component analysis and transcriptomics is a powerful tool for the identification of biomarkers for macrophage maturation in the U937 cell line. Proteomics. 2004;4:1014–1028. doi: 10.1002/pmic.200300669. PubMed DOI

Traore K., Sharma R., Thimmulappa R.K., Watson W.H., Biswal S., Trush M.A. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: Role in signaling TPA-induced growth arrest in ML-1 cells. J. Cell. Physiol. 2008;216:276–285. doi: 10.1002/jcp.21403. PubMed DOI PMC

Stefanska J., Pawliczak R. Apocynin: Molecular Aptitudes. Mediat. Inflamm. 2008;2008:1–10. doi: 10.1155/2008/106507. PubMed DOI PMC

Xie J., Hong E., Ding B., Jiang W., Zheng S., Xie Z., Tian D., Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front. Cell. Neurosci. 2020;14 doi: 10.3389/fncel.2020.578060. PubMed DOI PMC

Barbieri S.S., Eligini S., Brambilla M., Tremoli E., Colli S. Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: Critical role of NADPH oxidase. Cardiovasc. Res. 2003;60:187–197. doi: 10.1016/S0008-6363(03)00365-1. PubMed DOI

Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radic. Biol. Med. 2007;43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026. PubMed DOI

Gomez-Mejiba S.E., Zhai Z., Akram H., Deterding L.J., Hensley K., Smith N., Towner R.A., Tomer K.B., Mason R.P., Ramirez D.C. Immuno-spin trapping of protein and DNA radicals: “Tagging” free radicals to locate and understand the redox process. Free Radic. Biol. Med. 2009;46:853–865. doi: 10.1016/j.freeradbiomed.2008.12.020. PubMed DOI PMC

Mason R.P. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol. 2016;8:422–429. doi: 10.1016/j.redox.2016.04.003. PubMed DOI PMC

Kiningham K.K., Cardozo Z.-A., Cook C., Cole M.P., Stewart J.C., Tassone M., Coleman M.C., Spitz D.R. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-κB. Free Radic. Biol. Med. 2008;44:1610–1616. doi: 10.1016/j.freeradbiomed.2008.01.015. PubMed DOI PMC

Kamiya T., Makino J., Hara H., Inagaki N., Adachi T. Extracellular-superoxide dismutase expression during monocytic differentiation of U937 cells. J. Cell. Biochem. 2011;112:244–255. doi: 10.1002/jcb.22917. PubMed DOI

Ximenes V.F., Kanegae M.P., Rissato S.R., Galhiane M.S. The oxidation of apocynin catalyzed by myeloperoxidase: Proposal for NADPH oxidase inhibition. Arch. Biochem. Biophys. 2007;457:134–141. doi: 10.1016/j.abb.2006.11.010. PubMed DOI

Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat. Inflamm. 2015;2015:816460. doi: 10.1155/2015/816460. PubMed DOI PMC

Starr T., Bauler T., Malik-Kale P., Steele-Mortimer O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE. 2018;13:e0193601. doi: 10.1371/journal.pone.0193601. PubMed DOI PMC

Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. doi: 10.1038/nchembio.85. PubMed DOI

Ahmad A., Nawaz M.I., Siddiquei M.M., Abu El-Asrar A.M. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol. Cell. Biochem. 2021;476:2099–2109. doi: 10.1007/s11010-021-04071-y. PubMed DOI

Castor L.R.G., Locatelli K.A., Ximenes V.F. Pro-oxidant activity of apocynin radical. Free Radic. Biol. Med. 2010;48:1636–1643. doi: 10.1016/j.freeradbiomed.2010.03.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...