Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
34576127
PubMed Central
PMC8468151
DOI
10.3390/ijms22189963
PII: ijms22189963
Knihovny.cz E-zdroje
- Klíčová slova
- HL-60 cells, NADPH oxidase, NOX4, U-937 cells, macrophages, phorbol 12-myristate 13-acetate, protein-centered radicals,
- MeSH
- acetofenony farmakologie MeSH
- barvení a značení MeSH
- buněčná diferenciace * účinky léků MeSH
- elektronová paramagnetická rezonance MeSH
- HL-60 buňky MeSH
- hydroxylový radikál MeSH
- lidé MeSH
- monocyty cytologie účinky léků metabolismus MeSH
- NADP metabolismus MeSH
- proliferace buněk účinky léků MeSH
- proteiny metabolismus MeSH
- tetradekanoylforbolacetát farmakologie MeSH
- tvar buňky účinky léků MeSH
- U937 buňky MeSH
- viabilita buněk účinky léků MeSH
- volné radikály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetofenony MeSH
- acetovanillone MeSH Prohlížeč
- hydroxylový radikál MeSH
- NADP MeSH
- proteiny MeSH
- tetradekanoylforbolacetát MeSH
- volné radikály MeSH
Free radical-mediated activation of inflammatory macrophages remains ambiguous with its limitation to study within biological systems. U-937 and HL-60 cell lines serve as a well-defined model system known to differentiate into either macrophages or dendritic cells in response to various chemical stimuli linked with reactive oxygen species (ROS) production. Our present work utilizes phorbol 12-myristate-13-acetate (PMA) as a stimulant, and factors such as concentration and incubation time were considered to achieve optimized differentiation conditions. ROS formation likely hydroxyl radical (HO●) was confirmed by electron paramagnetic resonance (EPR) spectroscopy combined with confocal laser scanning microscopy (CLSM). In particular, U-937 cells were utilized further to identify proteins undergoing oxidation by ROS using anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibodies. Additionally, the expression pattern of NADPH Oxidase 4 (NOX4) in relation to induction with PMA was monitored to correlate the pattern of ROS generated. Utilizing macrophages as a model system, findings from the present study provide a valuable source for expanding the knowledge of differentiation and protein expression dynamics.
Zobrazit více v PubMed
Luan Y.-Y., Dong N., Xie M., Xiao X.-Z., Yao Y.-M. The Significance and Regulatory Mechanisms of Innate Immune Cells in the Development of Sepsis. J. Interf. Cytokine Res. 2014;34:2–15. doi: 10.1089/jir.2013.0042. PubMed DOI PMC
Liggett L.A., Sankaran V.G. Unraveling Hematopoiesis through the Lens of Genomics. Cell. 2020;182:1384–1400. doi: 10.1016/j.cell.2020.08.030. PubMed DOI PMC
Pennington K.N., Taylor J.A., Bren G.D., Paya C.V. IκB Kinase-Dependent Chronic Activation of NF-κB Is Necessary for p21 WAF1/Cip1 Inhibition of Differentiation-Induced Apoptosis of Monocytes. Mol. Cell. Biol. 2001;21:1930–1941. doi: 10.1128/MCB.21.6.1930-1941.2001. PubMed DOI PMC
Pagliara P., Lanubile R., Dwikat M., Abbro L., Dini L. Differentiation of monocytic U937 cells under static magnetic field exposure. Eur. J. Histochem. 2005;49:75–86. doi: 10.4081/930. PubMed DOI
Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI
Prasad A., Sedlářová M., Balukova A., Ovsii A., Rác M., Křupka M., Kasai S., Pospíšil P. Reactive Oxygen Species Imaging in U937 Cells. Front. Physiol. 2020;11:552569. doi: 10.3389/fphys.2020.552569. PubMed DOI PMC
Prasad A., Kikuchi H., Inoue K.Y., Suzuki M., Sugiura Y., Sugai T., Tomonori A., Tada M., Kobayashi M., Matsue T., et al. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front. Physiol. 2016;7 doi: 10.3389/fphys.2016.00109. PubMed DOI PMC
Chun E.M., Park Y.J., Kang H.S., Cho H.M., Jun D.Y., Kim Y.H. Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells. J. Leukoc. Biol. 2001;69:645–650. PubMed
Yamamoto T., Sakaguchi N., Hachiya M., Nakayama F., Yamakawa M., Akashi M. Role of catalase in monocytic differentiation of U937 cells by TPA: Hydrogen peroxide as a second messenger. Leukemia. 2008;23:761–769. doi: 10.1038/leu.2008.353. PubMed DOI
Zamani F., Shahneh F.Z., Aghebati-Maleki L., Baradaran B. Induction of CD14 Expression and Differentiation to Monocytes or Mature Macrophages in Promyelocytic Cell Lines: New Approach. Adv. Pharm. Bull. 2013;3:329–332. doi: 10.5681/apb.2013.053. PubMed DOI PMC
Mendoza-Coronel E., Castañón-Arreola M. Comparative evaluation ofin vitrohuman macrophage models for mycobacterial infection study. Pathog. Dis. 2016;74:ftw052. doi: 10.1093/femspd/ftw052. PubMed DOI
Lund M.E., To J., O’Brien B.A., Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J. Immunol. Methods. 2016;430:64–70. doi: 10.1016/j.jim.2016.01.012. PubMed DOI
Kikuchi H., Prasad A., Matsuoka R., Aoyagi S., Matsue T., Kasai S. Scanning Electrochemical Microscopy Imaging during Respiratory Burst in Human Cell. Front. Physiol. 2016;7:25. doi: 10.3389/fphys.2016.00025. PubMed DOI PMC
Robinson J.M. Reactive oxygen species in phagocytic leukocytes. Histochem. Cell Biol. 2008;130:281–297. doi: 10.1007/s00418-008-0461-4. PubMed DOI PMC
Pospíšil P., Prasad A., Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B Biol. 2014;139:11–23. doi: 10.1016/j.jphotobiol.2014.02.008. PubMed DOI
Pospíšil P., Prasad A., Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules. 2019;9:258. doi: 10.3390/biom9070258. PubMed DOI PMC
Gutteridge J.M.C., Halliwell B. Free Radicals and Antioxidants in the Year 2000: A Historical Look to the Future. Ann. N. Y. Acad. Sci. 2006;899:136–147. doi: 10.1111/j.1749-6632.2000.tb06182.x. PubMed DOI
Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC
Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC
Schieber M., Chandel N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Hawkins C.L., Davies M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta. 2001;1504:196–219. doi: 10.1016/S0005-2728(00)00252-8. PubMed DOI
Hawkins C.L., Davies M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019;294:19683–19708. doi: 10.1074/jbc.REV119.006217. PubMed DOI PMC
Dean R.T., Fu S., Stocker R., Davies M. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 1997;324:1–18. doi: 10.1042/bj3240001. PubMed DOI PMC
Berlett B.S., Stadtman E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997;272:20313–20316. doi: 10.1074/jbc.272.33.20313. PubMed DOI
Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI
Di Mascio P., Martinez G.R., Miyamoto S., Ronsein G.E., Medeiros M.H.G., Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI
Kumar A., Prasad A., Sedlářová M., Pospíšil P. Organic radical imaging in plants: Focus on protein radicals. Free Radic. Biol. Med. 2019;130:568–575. doi: 10.1016/j.freeradbiomed.2018.10.428. PubMed DOI
Kumar A., Prasad A., Sedlářová M., Pospíšil P. Characterization of Protein Radicals in Arabidopsis. Front. Physiol. 2019;10:958. doi: 10.3389/fphys.2019.00958. PubMed DOI PMC
Mason R.P. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic. Biol. Med. 2004;36:1214–1223. doi: 10.1016/j.freeradbiomed.2004.02.077. PubMed DOI
Ramirez D.C., Mason R.P. Immuno-Spin Trapping: Detection of Protein-Centered Radicals. Curr. Protoc. Toxicol. 2005;24:17.7.1–17.7.18. doi: 10.1002/0471140856.tx1707s24. PubMed DOI
Muñoz M.D., Gutierrez L.J., Delignat S., Russick J., Mejiba S.E.G., Lacroix-Desmazes S., Enriz R.D., Ramirez D.C., Gomez S.E., Enriz D.R. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide binds to toll-like receptor-2-TIR-BB-loop domain and dampens downstream inflammatory signaling. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2019;1865:1152–1159. doi: 10.1016/j.bbadis.2019.01.005. PubMed DOI
Augustyniak E., Adam A., Wojdyla K., Rogowska-Wrzesinska A., Willetts R., Korkmaz A., Atalay M., Weber D., Grune T., Borsa C., et al. Validation of protein carbonyl measurement: A multi-centre study. Redox Biol. 2015;4:149–157. doi: 10.1016/j.redox.2014.12.014. PubMed DOI PMC
Verhoeckx K.C.M., Bijlsma S., de Groene E.M., Witkamp R.F., van der Greef J., Rodenburg R.J.T. A combination of proteomics, principal component analysis and transcriptomics is a powerful tool for the identification of biomarkers for macrophage maturation in the U937 cell line. Proteomics. 2004;4:1014–1028. doi: 10.1002/pmic.200300669. PubMed DOI
Traore K., Sharma R., Thimmulappa R.K., Watson W.H., Biswal S., Trush M.A. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: Role in signaling TPA-induced growth arrest in ML-1 cells. J. Cell. Physiol. 2008;216:276–285. doi: 10.1002/jcp.21403. PubMed DOI PMC
Stefanska J., Pawliczak R. Apocynin: Molecular Aptitudes. Mediat. Inflamm. 2008;2008:1–10. doi: 10.1155/2008/106507. PubMed DOI PMC
Xie J., Hong E., Ding B., Jiang W., Zheng S., Xie Z., Tian D., Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front. Cell. Neurosci. 2020;14 doi: 10.3389/fncel.2020.578060. PubMed DOI PMC
Barbieri S.S., Eligini S., Brambilla M., Tremoli E., Colli S. Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: Critical role of NADPH oxidase. Cardiovasc. Res. 2003;60:187–197. doi: 10.1016/S0008-6363(03)00365-1. PubMed DOI
Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free Radic. Biol. Med. 2007;43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026. PubMed DOI
Gomez-Mejiba S.E., Zhai Z., Akram H., Deterding L.J., Hensley K., Smith N., Towner R.A., Tomer K.B., Mason R.P., Ramirez D.C. Immuno-spin trapping of protein and DNA radicals: “Tagging” free radicals to locate and understand the redox process. Free Radic. Biol. Med. 2009;46:853–865. doi: 10.1016/j.freeradbiomed.2008.12.020. PubMed DOI PMC
Mason R.P. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol. 2016;8:422–429. doi: 10.1016/j.redox.2016.04.003. PubMed DOI PMC
Kiningham K.K., Cardozo Z.-A., Cook C., Cole M.P., Stewart J.C., Tassone M., Coleman M.C., Spitz D.R. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-κB. Free Radic. Biol. Med. 2008;44:1610–1616. doi: 10.1016/j.freeradbiomed.2008.01.015. PubMed DOI PMC
Kamiya T., Makino J., Hara H., Inagaki N., Adachi T. Extracellular-superoxide dismutase expression during monocytic differentiation of U937 cells. J. Cell. Biochem. 2011;112:244–255. doi: 10.1002/jcb.22917. PubMed DOI
Ximenes V.F., Kanegae M.P., Rissato S.R., Galhiane M.S. The oxidation of apocynin catalyzed by myeloperoxidase: Proposal for NADPH oxidase inhibition. Arch. Biochem. Biophys. 2007;457:134–141. doi: 10.1016/j.abb.2006.11.010. PubMed DOI
Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat. Inflamm. 2015;2015:816460. doi: 10.1155/2015/816460. PubMed DOI PMC
Starr T., Bauler T., Malik-Kale P., Steele-Mortimer O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE. 2018;13:e0193601. doi: 10.1371/journal.pone.0193601. PubMed DOI PMC
Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. doi: 10.1038/nchembio.85. PubMed DOI
Ahmad A., Nawaz M.I., Siddiquei M.M., Abu El-Asrar A.M. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol. Cell. Biochem. 2021;476:2099–2109. doi: 10.1007/s11010-021-04071-y. PubMed DOI
Castor L.R.G., Locatelli K.A., Ximenes V.F. Pro-oxidant activity of apocynin radical. Free Radic. Biol. Med. 2010;48:1636–1643. doi: 10.1016/j.freeradbiomed.2010.03.010. PubMed DOI
NADPH oxidase-dependent free radical generation and protein adduct formation in neutrophils
ROS signaling in innate immunity via oxidative protein modifications
Bioactive Compounds and Their Impact on Protein Modification in Human Cells