Differential effects of ascorbic acid on monocytic cell morphology and protein modification: Shifting from pro-oxidative to antioxidant properties
Status PubMed-not-MEDLINE Language English Country Netherlands Media electronic-ecollection
Document type Journal Article
PubMed
38234371
PubMed Central
PMC10792182
DOI
10.1016/j.bbrep.2023.101622
PII: S2405-5808(23)00203-0
Knihovny.cz E-resources
- Keywords
- Antioxidants, Human cells, Pro-oxidant, Reactive oxygen species, Vitamin C,
- Publication type
- Journal Article MeSH
In this study, we investigated the properties of ascorbic acid (vitamin C), which is a naturally occurring water-soluble vitamin. Our goal is to evaluate its pro-oxidative and/or antioxidant capabilities. To do this, we initially used a confocal laser scanning microscope (CLSM) to visualize the differentiation pattern in U-937 cells under the treatment of variable concentrations of ascorbic acid. Prior to induction, U-937 cells showed a spherical morphology. After treatment, significant morphological changes were observed in the form of prominent pseudopodia and amoeboid structures. Interestingly, pseudopodia incidences increased with an increase in ascorbic acid concentrations. In addition, our analysis of protein modification using anti-malondialdehyde antibodies showed changes in more than one protein. The findings reveal the link between the differentiation of U-937 cells into macrophages and the protein modifications triggered by the production of reactive oxygen species when U-937 cells are exposed to ascorbic acid. Furthermore, the transformation of ascorbic acid from a pro-oxidative to an antioxidant property is also demonstrated.
See more in PubMed
Du J., Cullen J.J., Buettner G.R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta Rev. Canc. 2012;1826(2):443–457. PubMed PMC
Nimse S.B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–28006.
Macan A.M., Kraljevic T.G., Raic-Malic S. Therapeutic perspective of vitamin C and its derivatives. Antioxidants. 2019;8(8):36. PubMed PMC
Lane D.J.R., Richardson D.R. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption. Free Radic. Biol. Med. 2014;75:69–83. PubMed
Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11) PubMed PMC
Ricaurte F.R., Kewan T., Daw H. Scurvy: a rare cause of anemia. Cureus. 2019;11(9) PubMed PMC
Njus D., Kelley P.M., Tu Y.J., Schlegel H.B. Ascorbic acid: the chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020;159:37–43. PubMed
DePhillipo N.N., Aman Z.S., Kennedy M.I., Begley J.P., Moatshe G., LaPrade R.F. Efficacy of vitamin C supplementation on collagen synthesis and oxidative stress after musculoskeletal injuries A systematic review. Orthopaedic J. Sports Med. 2018;6(10) PubMed PMC
van Gorkom G.N.Y., Wolterink R., Van Elssen C., Wieten L., Germeraad W.T.V., Bos G.M.J. Influence of vitamin C on lymphocytes: an overview. Antioxidants. 2018;7(3) PubMed PMC
Li N.Y., Zhao G.J., Wu W.L., Zhang M.X., Liu W.Y., Chen Q.F., Wang X.Q. The efficacy and safety of vitamin C for iron supplementation in adult patients with iron deficiency anemia A randomized clinical trial. JAMA Netw. Open. 2020;3(11) PubMed PMC
Pullar J.M., Carr A.C., Bozonet S.M., Vissers M.C.M. High vitamin C status is associated with elevated mood in male tertiary students. Antioxidants. 2018;7(7) PubMed PMC
Jarisch R., Weyer D., Ehlert E., Koch C., Pinkowski E., Jung P., Kähler W., Girgensohn R., Hemmer W., Koch A. Influence of orally taken vitamin C on histamine levels and motion sickness. J. Allergy Clin. Immunol. 2011;127(2):AB261. AB261.
Phaniendra A., Jestadi D.B., Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015;30(1):11–26. PubMed PMC
Di Meo S., Reed T.T., Venditti P., Victor V.M. 2016. Role of ROS and RNS Sources in Physiological and Pathological Conditions, Oxidative Medicine and Cellular Longevity 2016. PubMed PMC
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci. U.S.A. 2018;115(23):5839–5848. PubMed PMC
Prasad A., Manoharan R.R., Sedlářová M., Pospíšil P. Free radical-mediated protein radical formation in differentiating monocytes. Int. J. Mol. Sci. 2021;22(18):17. PubMed PMC
Pospíšil P., Prasad A., Rac M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules. 2019;9(7) PubMed PMC
Chan A.C., Tran K., Raynor T., Ganz P.R., Chow C.K. Regeneration of vitamin E in human platelets. J. Biol. Chem. 1991;266(26):17290–17295. PubMed
Chan A.C. Partners in defense, vitamin-E and vitamin-C. Can. J. Physiol. Pharmacol. 1993;71(9):725–731. PubMed
Poljsak B., Gazdag Z., Jenko-Brinovec S., Fujs S., Pesti M., Belagyi J., Plesnicar S., Raspor P. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J. Appl. Toxicol. 2005;25(6):535–548. PubMed
Gegotek A., Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants. 2022;11(10) PubMed PMC
Sundstrom C., Nilsson K. Establishment and characterization of A human histiocytic lymphoma cell line (U-937) Int. J. Cancer. 1976;17(5):565–577. PubMed
Nascimento C.R., Fernandes N.A.R., Maldonado L.A.G., Rossa C. Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochem. Biophy. Rep. 2022;32 PubMed PMC
Dreyling M.H., MartinezCliment J.A., Zheng M., Mao J., Rowley J.D., Bohlander S.K. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl. Acad. Sci. U.S.A. 1996;93(10):4804–4809. PubMed PMC
Fu J.W., Wu Z.Y., Liu J.F., Wu T.F. Vitamin C: a stem cell promoter in cancer metastasis and immunotherapy. Biomed. Pharmacother. 2020;131 PubMed
Ang A., Pullar J.M., Currie M.J., Vissers M.C.M. Vitamin C and immune cell function in inflammation and cancer. Biochem. Soc. Trans. 2018;46:1147–1159. PubMed PMC
Strober W. Trypan blue exclusion test of cell viability. Curr. Protoc. Im. 2015;111 A3.B.1-A3.B.3. PubMed PMC
Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharm. 2014;23(1):37–45. PubMed
Prasad A., Sedlářová M., Balukova A., Ovsii A., Rac M., Krupka M., Kasai S., Pospíšil P. Reactive oxygen species imaging in U937 cells. Front. Physiol. 2020;11 PubMed PMC
Starr T., Bauler T.J., Malik-Kale P., Steele-Mortimer O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS One. 2018;13(3) PubMed PMC
Lim P.S., Sutton C.R., Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology. 2015;146(4):508–522. PubMed PMC
Musashi M., Ota S., Shiroshita N. The role of protein kinase C isoforms in cell proliferation and apoptosis. Int. J. Hematol. 2000;72(1):12–19. PubMed
Karlsson A., Nixon J.B., McPhail L.C. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J. Leukoc. Biol. 2000;67(3):396–404. PubMed
Prousek J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007;79(12):2325–2338.
Qiao H., May J.M. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2) Free Radic. Biol. Med. 2009;46(8):1221–1232. PubMed PMC
Diederich A., Fründ H.J., Trojanowicz B., Navarrete Santos A., Nguyen A.D., Hoang-Vu C., Gernhardt C.R. Influence of ascorbic acid as a growth and differentiation factor on dental stem cells used in regenerative endodontic therapies. J. Clin. Med. 2023;12:1196. PubMed PMC