Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species

. 2018 Apr 12 ; 8 (1) : 5933. [epub] 20180412

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29651122
Odkazy

PubMed 29651122
PubMed Central PMC5897349
DOI 10.1038/s41598-018-24126-3
PII: 10.1038/s41598-018-24126-3
Knihovny.cz E-zdroje

Strongylid nematodes in large terrestrial herbivores such as great apes, equids, elephants, and humans tend to occur in complex communities. However, identification of all species within strongylid communities using traditional methods based on coproscopy or single nematode amplification and sequencing is virtually impossible. High-throughput sequencing (HTS) technologies provide opportunities to generate large amounts of sequence data and enable analyses of samples containing a mixture of DNA from multiple species/genotypes. We designed and tested an HTS approach for strain-level identification of gastrointestinal strongylids using ITS-2 metabarcoding at the MiSeq Illumina platform in samples from two free-ranging non-human primate species inhabiting the same environment, but differing significantly in their host traits and ecology. Although we observed overlapping of particular haplotypes, overall the studied primate species differed in their strongylid nematode community composition. Using HTS, we revealed hidden diversity in the strongylid nematode communities in non-human primates, more than one haplotype was found in more than 90% of samples and coinfections of more than one putative species occurred in 80% of samples. In conclusion, the HTS approach on strongylid nematodes, preferably using fecal samples, represents a time and cost-efficient way of studying strongylid communities and provides a resolution superior to traditional approaches.

Zobrazit více v PubMed

Arneberg P, Skorping A, Grenfell B, Read AF. Host densities as determinants of abundance in parasite communities. Proc R Soc B Biol Sci. 1998;265:1283–1289. doi: 10.1098/rspb.1998.0431. DOI

Rothman, J. & Bowman, D. D. A review of the endoparasites of mountain gorillas. Companion Exot Anim Parasitol. (International Veterinary Information Service, 2003).

Lichtenfels JR, Kharchenko VA, Dvojnos GM. Illustrated identification keys to strongylid parasites (strongylidae: Nematoda) of horses, zebras and asses (Equidae) Vet Parasitol. 2008;156:4–161. doi: 10.1016/j.vetpar.2008.04.026. PubMed DOI

Van Wyk JA, Cabaret J, Michael LM. Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet Parasitol. 2004;119:277–306. doi: 10.1016/j.vetpar.2003.11.012. PubMed DOI

McLean ER, et al. Genetic identification of five strongyle nematode parasites in wild African elephants (Loxodonta africana) J Wildl Dis. 2012;48:707–716. doi: 10.7589/0090-3558-48.3.707. PubMed DOI

Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–18. doi: 10.1038/nmeth1156. PubMed DOI

von Bubnoff A. Next-generation sequencing: The race is on. Cell. 2008;132:721–723. doi: 10.1016/j.cell.2008.02.028. PubMed DOI

Gloor GB, et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE. 2010;5(10):e15406. doi: 10.1371/journal.pone.0015406. PubMed DOI PMC

Gomez A, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–2565. doi: 10.1111/mec.13181. PubMed DOI

Gomez A, et al. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–2153. doi: 10.1016/j.celrep.2016.02.013. PubMed DOI

Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci. 2015;370:20140295. doi: 10.1098/rstb.2014.0295. PubMed DOI PMC

Moeller AH, et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14:340–345. doi: 10.1016/j.chom.2013.08.005. PubMed DOI PMC

Peng X, et al. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. J Microbiol Methods. 2013;95:455–462. doi: 10.1016/j.mimet.2013.07.015. PubMed DOI

Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2013;489:250–256. doi: 10.1038/nature11553. PubMed DOI PMC

Celikkol-Aydin S, et al. 16S rRNA gene profiling of planktonic and biofilm microbial populations in the Gulf of Guinea using Illumina NGS. Mar Environ Res. 2016;122:105–112. doi: 10.1016/j.marenvres.2016.10.001. PubMed DOI

Christaki U, et al. Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb Ecol. 2014;67:13–23. doi: 10.1007/s00248-013-0290-4. PubMed DOI

Medinger R, et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. doi: 10.1111/j.1365-294X.2009.04478.x. PubMed DOI PMC

Dawson SC, Fritz-Laylin LK. Sequencing free-living protists: The case for metagenomics: Genomics update. Environ Microbiol. 2009;11:1627–1631. doi: 10.1111/j.1462-2920.2009.01965.x. PubMed DOI

Porazinska DL, Sung W, Giblin-Davis RM, Thomas WK. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resour. 2010;10:666–676. doi: 10.1111/j.1755-0998.2009.02819.x. PubMed DOI

Sapkota R, Nicolaisen M. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecol. 2015;15:3. doi: 10.1186/s12898-014-0034-4. PubMed DOI PMC

Aivelo T, Medlar A, Loytynoja A, Laakkonen J, Jernvall J. Tracking year-to-year changes in intestinal nematode communities of rufous mouse lemurs (Microcebus rufus) Parasitology. 2015;142:1095–1107. doi: 10.1017/S0031182015000438. PubMed DOI

Avramenko RW, et al. Exploring the gastrointestinal “nemabiome”: Deep amplicon sequencing to quantify the species composition of parasitic nematode communities. PLoS ONE. 2015;10(12):e0143559. doi: 10.1371/journal.pone.0143559. PubMed DOI PMC

Lott MJ, Hose GC, Power ML. Parasitic nematode communities of the red kangaroo, Macropus rufus: richness and structuring in captive systems. Parasitol Res. 2015;114:2925–2932. doi: 10.1007/s00436-015-4494-z. PubMed DOI

Tanaka R, et al. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS ONE. 2014;9(10):e110769. doi: 10.1371/journal.pone.0110769. PubMed DOI PMC

Drakulovski P, et al. Assessment of gastrointestinal parasites in wild chimpanzees (Pan troglodytes troglodytes) in southeast Cameroon. Parasitol Res. 2014;113:2541–2550. doi: 10.1007/s00436-014-3904-y. PubMed DOI PMC

Huffman MA, Gotoh S, Turner LA, Hamai M, Yoshida K. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates. 1997;38:111–125. doi: 10.1007/BF02382002. DOI

Pafčo B, et al. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas? Parasitol Res. 2017;116:3401–3410. doi: 10.1007/s00436-017-5667-8. PubMed DOI

Ravasi DF, O’Riain MJ, Adams VJ, Appleton CC. A coprological survey of protozoan and nematode parasites of free-ranging chacma baboons (Papio ursinus) in the southwestern Cape, South Africa. South African J Wildl Res. 2012;42:35–44. doi: 10.3957/056.042.0108. DOI

Sleeman JM, Meader LL, Mudakikwa AB, Foster JW, Patton S. Gastrointestinal parasites of mountain gorillas (Gorilla gorilla beringei) in the Parc National des Volcans, Rwanda. J Zoo Wild Med. 2000;31:322–328. doi: 10.1638/1042-7260(2000)031[0322:GPOMGG]2.0.CO;2. PubMed DOI

Krief S, et al. Clinical and pathologic manifestation of oesophagostomosis in African great apes: Does self-medication in wild apes influence disease progression? J Med Primatol. 2008;37:188–195. doi: 10.1111/j.1600-0684.2008.00285.x. PubMed DOI

Terio KA, et al. Oesophagostomiasis in non-human primates of Gombe National Park, Tanzania. Am J Primatol. 2016 PubMed PMC

Gasser RB, Woods WG, Huffman MA, Blotkamp J, Polderman AM. Molecular separation of Oesophagostomum stephanostomum and Oesophagostomum bifurcum (Nematoda: Strongyloidea) from non-human primates. Int J Parasitol. 1999;29:1087–1091. doi: 10.1016/S0020-7519(99)00037-5. PubMed DOI

Hasegawa H, et al. Great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8(3):e2715. doi: 10.1371/journal.pntd.0002715. PubMed DOI PMC

Hasegawa H, et al. Molecular features of hookworm larvae (Necator spp.) raised by coproculture from Ugandan chimpanzees and Gabonese gorillas and humans. Parasitol Int. 2017;66:12–15. doi: 10.1016/j.parint.2016.11.003. PubMed DOI

Makouloutou P, et al. Prevalence and genetic diversity of Oesophagostomum stephanostomum in wild lowland gorillas at Moukalaba-Doudou National Park, Gabon. Helminthologia. 2014;51:83–93. doi: 10.2478/s11687-014-0214-y. DOI

Ota N, et al. Molecular identification of Oesophagostomum spp. from “village” chimpanzees in Uganda and their phylogenetic relationship with those of other primates. R Soc Open Sci. 2015;2:150471. doi: 10.1098/rsos.150471. PubMed DOI PMC

Schindler AR, de Gruijter JM, Polderman AM, Gasser RB. Definition of genetic markers in nuclear ribosomal DNA for a neglected parasite of primates, Ternidens deminutus (Nematoda: Strongylida)–diagnostic and epidemiological implications. Parasitology. 2005;131:539–546. doi: 10.1017/S0031182005007936. PubMed DOI

Cibot M, et al. Nodular worm infections in wild non-human primates and humans living in the Sebitoli Area (Kibale National Park, Uganda): Do high spatial proximity favor zoonotic transmission? PLoS Negl Trop Dis. 2015;9(10):e0004133. doi: 10.1371/journal.pntd.0004133. PubMed DOI PMC

Ghai RR, Chapman CA, Omeja PA, Davies TJ, Goldberg TL. Nodule worm infection in humans and wild primates in Uganda: Cryptic species in a newly identified region of human transmission. PLoS Negl Trop Dis. 2014;8(1):e2641. doi: 10.1371/journal.pntd.0002641. PubMed DOI PMC

Deagle B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett. 10(9), 10.1098/rsbl.2014.0562 (2014). PubMed PMC

Narat V, et al. Intestinal helminths of wild bonobos in forest-savanna mosaic: Risk assessment of cross-species transmission with local people in the Democratic Republic of the Congo. Ecohealth. 2015;12:621–633. doi: 10.1007/s10393-015-1058-8. PubMed DOI

Krief S, et al. Nodular worm infection in wild chimpanzees in Western Uganda: A risk for human health? PLoS Negl Trop Dis. 2010;4(3):e630. doi: 10.1371/journal.pntd.0000630. PubMed DOI PMC

Roeber F, Jex AR, Gasser RB. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol Adv. 2013;31:1135–1152. doi: 10.1016/j.biotechadv.2013.01.008. PubMed DOI PMC

Caldecott, J. & Miles, L. World Atlas of Great Apes and Their Conservation. University of California Press, Oakland, California (2005).

Blouin MS. Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. Int J Parasitol. 2002;32:527–531. doi: 10.1016/S0020-7519(01)00357-5. PubMed DOI

Keith RK. Differentiation of the infective larvae of some common nematodes of cattle. Aust J Zool. 1952;1:223–235. doi: 10.1071/ZO9530223. DOI

Parnell IW. Studies on the bionomics and control of the bursate nematodes of horses and sheep. II. Technique Can J Res. 1936;14:71–81. doi: 10.1139/cjr36d-009. DOI

Rossanigo CE, Gruner L. Moisture and temperature requirements in faeces for the development of free-living stages of gastrointestinal nematodes of sheep, cattle and deer. J Helminthol. 1995;69:357–362. doi: 10.1017/S0022149X00014954. PubMed DOI

Smith G, Schad GA. Ancylostoma duodenale and Necator americanus: effect of temperature on egg development and mortality. Parasitology. 1989;99:127–132. doi: 10.1017/S0031182000061102. PubMed DOI

Udonsi JK, Atata G. Necator americanus: Temperature, pH, light, and larval development, longevity, and desiccation tolerance. Exp Parasitol. 1987;63:136–142. doi: 10.1016/0014-4894(87)90154-8. PubMed DOI

Pafčo, B., et al Gastrointestinal protists and helminths of habituated agile mangabeys (Cercocebus agilis) at Bai Hokou, Central African Republic. Am J Primatol, 10.1002/ajp.22736. PubMed

Stevenson LA, Chilton NB, Gasser RB. Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int J Parasitol. 1995;25:483–488. doi: 10.1016/0020-7519(94)00156-I. PubMed DOI

Hoagland KE, Schad GA. Necator americanus and Ancylostoma duodenale: Life history parameters and epidemiological implications of two sympatric hookworms of humans. Exp Parasitol. 1978;44:36–49. doi: 10.1016/0014-4894(78)90078-4. PubMed DOI

Hamad I, et al. Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Sci Rep. 2014;4:1–9. PubMed PMC

Kalousová B, et al. Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas. Parasit Vectors. 2016;9:75. doi: 10.1186/s13071-016-1357-0. PubMed DOI PMC

De Gruijter JM, Ziem J, Verweij JJ, Polderman AM, Gasser RB. Genetic substructuring within Oesophagostomum bifurcum (nematoda) from human and non-human primates from Ghana based on random amplified polymorphic DNA analysis. Am J Trop Med Hyg. 2004;71:227–233. PubMed

Sak B, et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS ONE. 2013;8(8):e71840. doi: 10.1371/journal.pone.0071840. PubMed DOI PMC

Mapua MI, et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology. 2015;142:890–900. doi: 10.1017/S0031182015000086. PubMed DOI

Devreese, L. Many hands make light work. Foraging strategy of agile mangabeys (Cercocebus agilis) exhibiting a permanent large grouping pattern at Bai Hokou, Central African Republic. University of Antwerp, Antwerp, Belgium (2011). PubMed

Hasegawa, H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms in Primate parasite ecology: The dynamics of host-parasite relationships (ed. Huffman, M. A. & Chapman, C.) 29–46 (Cambridge University Press, 2009).

Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC

Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina paired-end read mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC

Callahan, B. J. et al. DADA2: High resolution sample inference from amplicon data. bioRxiv. 0–14 (2015). PubMed PMC

Oksanen, J. Multivariate Analysis of Ecological Communities in R: vegan tutorial (2015).

Wright ES. Using DECIPHERv2.0 to analyze big biological sequence data in R. R J. 2016;8:352–359.

Schliep KP. phangorn: Phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Posada D, Crandall KA. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI

Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 28–36 (2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Shaping the human gut microbiota: The role of canine companionship, lifestyle choices, and Blastocystis sp

. 2025 Jun ; 20 () : 100979. [epub] 20250125

Intraspecific variability of rice root knot nematodes across diverse agroecosystems for sustainable management

. 2024 Dec 03 ; 14 (1) : 30032. [epub] 20241203

Co-introduction into a delicate island ecosystem: metastrongyloid nematodes (superfamily Metastrongyloidea) of veterinary and medical importance circulating in aquatic and terrestrial environments of Tenerife (Canary Islands)

. 2024 Oct 09 ; 123 (10) : 344. [epub] 20241009

Novel insight into the genetic diversity of strongylid nematodes infecting South-East and East Asian primates

. 2024 Apr ; 151 (5) : 514-522. [epub] 20240417

High diversity and sharing of strongylid nematodes in humans and great apes co-habiting an unprotected area in Cameroon

. 2023 Aug ; 17 (8) : e0011499. [epub] 20230825

Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts

. 2022 Dec ; 24 (12) : 5788-5808. [epub] 20220909

Ecological drivers of helminth infection patterns in the Virunga Massif mountain gorilla population

. 2022 Apr ; 17 () : 174-184. [epub] 20220120

Variation in diet composition and its relation to gut microbiota in a passerine bird

. 2022 Mar 08 ; 12 (1) : 3787. [epub] 20220308

Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death

. 2021 Aug ; 127 (2) : 141-150. [epub] 20210527

Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon

. 2021 Jul 05 ; 14 (1) : 354. [epub] 20210705

Heterogeneity in patterns of helminth infections across populations of mountain gorillas (Gorilla beringei beringei)

. 2021 May 25 ; 11 (1) : 10869. [epub] 20210525

Genetic characterization of nodular worm infections in Asian Apes

. 2021 Mar 31 ; 11 (1) : 7226. [epub] 20210331

Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study

. 2020 Aug 06 ; 10 (1) : 13246. [epub] 20200806

Sympatric western lowland gorillas, central chimpanzees and humans are infected with different trichomonads

. 2020 Feb ; 147 (2) : 225-230. [epub] 20191007

Relationships Between Gastrointestinal Parasite Infections and the Fecal Microbiome in Free-Ranging Western Lowland Gorillas

. 2018 ; 9 () : 1202. [epub] 20180615

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace