Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29651122
PubMed Central
PMC5897349
DOI
10.1038/s41598-018-24126-3
PII: 10.1038/s41598-018-24126-3
Knihovny.cz E-zdroje
- MeSH
- feces parazitologie MeSH
- genetická variace MeSH
- infekce hlísticemi řádu Strongylida genetika parazitologie MeSH
- koně genetika parazitologie MeSH
- nemoci koní genetika parazitologie MeSH
- rozptýlené repetitivní sekvence genetika MeSH
- Strongylida klasifikace genetika MeSH
- sympatrie MeSH
- taxonomické DNA čárové kódování * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Strongylid nematodes in large terrestrial herbivores such as great apes, equids, elephants, and humans tend to occur in complex communities. However, identification of all species within strongylid communities using traditional methods based on coproscopy or single nematode amplification and sequencing is virtually impossible. High-throughput sequencing (HTS) technologies provide opportunities to generate large amounts of sequence data and enable analyses of samples containing a mixture of DNA from multiple species/genotypes. We designed and tested an HTS approach for strain-level identification of gastrointestinal strongylids using ITS-2 metabarcoding at the MiSeq Illumina platform in samples from two free-ranging non-human primate species inhabiting the same environment, but differing significantly in their host traits and ecology. Although we observed overlapping of particular haplotypes, overall the studied primate species differed in their strongylid nematode community composition. Using HTS, we revealed hidden diversity in the strongylid nematode communities in non-human primates, more than one haplotype was found in more than 90% of samples and coinfections of more than one putative species occurred in 80% of samples. In conclusion, the HTS approach on strongylid nematodes, preferably using fecal samples, represents a time and cost-efficient way of studying strongylid communities and provides a resolution superior to traditional approaches.
Department of Zoology Faculty of Science Charles University Viničná 7 Praha 128 44 Czech Republic
Fauna and Flora International Pembroke St Cambridge CB2 3QZ United Kingdom
The Czech Academy of Sciences Institute of Vertebrate Biology Květná 8 Brno 603 65 Czech Republic
Zobrazit více v PubMed
Arneberg P, Skorping A, Grenfell B, Read AF. Host densities as determinants of abundance in parasite communities. Proc R Soc B Biol Sci. 1998;265:1283–1289. doi: 10.1098/rspb.1998.0431. DOI
Rothman, J. & Bowman, D. D. A review of the endoparasites of mountain gorillas. Companion Exot Anim Parasitol. (International Veterinary Information Service, 2003).
Lichtenfels JR, Kharchenko VA, Dvojnos GM. Illustrated identification keys to strongylid parasites (strongylidae: Nematoda) of horses, zebras and asses (Equidae) Vet Parasitol. 2008;156:4–161. doi: 10.1016/j.vetpar.2008.04.026. PubMed DOI
Van Wyk JA, Cabaret J, Michael LM. Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet Parasitol. 2004;119:277–306. doi: 10.1016/j.vetpar.2003.11.012. PubMed DOI
McLean ER, et al. Genetic identification of five strongyle nematode parasites in wild African elephants (Loxodonta africana) J Wildl Dis. 2012;48:707–716. doi: 10.7589/0090-3558-48.3.707. PubMed DOI
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–18. doi: 10.1038/nmeth1156. PubMed DOI
von Bubnoff A. Next-generation sequencing: The race is on. Cell. 2008;132:721–723. doi: 10.1016/j.cell.2008.02.028. PubMed DOI
Gloor GB, et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE. 2010;5(10):e15406. doi: 10.1371/journal.pone.0015406. PubMed DOI PMC
Gomez A, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–2565. doi: 10.1111/mec.13181. PubMed DOI
Gomez A, et al. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–2153. doi: 10.1016/j.celrep.2016.02.013. PubMed DOI
Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci. 2015;370:20140295. doi: 10.1098/rstb.2014.0295. PubMed DOI PMC
Moeller AH, et al. SIV-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14:340–345. doi: 10.1016/j.chom.2013.08.005. PubMed DOI PMC
Peng X, et al. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. J Microbiol Methods. 2013;95:455–462. doi: 10.1016/j.mimet.2013.07.015. PubMed DOI
Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2013;489:250–256. doi: 10.1038/nature11553. PubMed DOI PMC
Celikkol-Aydin S, et al. 16S rRNA gene profiling of planktonic and biofilm microbial populations in the Gulf of Guinea using Illumina NGS. Mar Environ Res. 2016;122:105–112. doi: 10.1016/j.marenvres.2016.10.001. PubMed DOI
Christaki U, et al. Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb Ecol. 2014;67:13–23. doi: 10.1007/s00248-013-0290-4. PubMed DOI
Medinger R, et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. doi: 10.1111/j.1365-294X.2009.04478.x. PubMed DOI PMC
Dawson SC, Fritz-Laylin LK. Sequencing free-living protists: The case for metagenomics: Genomics update. Environ Microbiol. 2009;11:1627–1631. doi: 10.1111/j.1462-2920.2009.01965.x. PubMed DOI
Porazinska DL, Sung W, Giblin-Davis RM, Thomas WK. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resour. 2010;10:666–676. doi: 10.1111/j.1755-0998.2009.02819.x. PubMed DOI
Sapkota R, Nicolaisen M. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecol. 2015;15:3. doi: 10.1186/s12898-014-0034-4. PubMed DOI PMC
Aivelo T, Medlar A, Loytynoja A, Laakkonen J, Jernvall J. Tracking year-to-year changes in intestinal nematode communities of rufous mouse lemurs (Microcebus rufus) Parasitology. 2015;142:1095–1107. doi: 10.1017/S0031182015000438. PubMed DOI
Avramenko RW, et al. Exploring the gastrointestinal “nemabiome”: Deep amplicon sequencing to quantify the species composition of parasitic nematode communities. PLoS ONE. 2015;10(12):e0143559. doi: 10.1371/journal.pone.0143559. PubMed DOI PMC
Lott MJ, Hose GC, Power ML. Parasitic nematode communities of the red kangaroo, Macropus rufus: richness and structuring in captive systems. Parasitol Res. 2015;114:2925–2932. doi: 10.1007/s00436-015-4494-z. PubMed DOI
Tanaka R, et al. Assessment of helminth biodiversity in wild rats using 18S rDNA based metagenomics. PLoS ONE. 2014;9(10):e110769. doi: 10.1371/journal.pone.0110769. PubMed DOI PMC
Drakulovski P, et al. Assessment of gastrointestinal parasites in wild chimpanzees (Pan troglodytes troglodytes) in southeast Cameroon. Parasitol Res. 2014;113:2541–2550. doi: 10.1007/s00436-014-3904-y. PubMed DOI PMC
Huffman MA, Gotoh S, Turner LA, Hamai M, Yoshida K. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates. 1997;38:111–125. doi: 10.1007/BF02382002. DOI
Pafčo B, et al. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas? Parasitol Res. 2017;116:3401–3410. doi: 10.1007/s00436-017-5667-8. PubMed DOI
Ravasi DF, O’Riain MJ, Adams VJ, Appleton CC. A coprological survey of protozoan and nematode parasites of free-ranging chacma baboons (Papio ursinus) in the southwestern Cape, South Africa. South African J Wildl Res. 2012;42:35–44. doi: 10.3957/056.042.0108. DOI
Sleeman JM, Meader LL, Mudakikwa AB, Foster JW, Patton S. Gastrointestinal parasites of mountain gorillas (Gorilla gorilla beringei) in the Parc National des Volcans, Rwanda. J Zoo Wild Med. 2000;31:322–328. doi: 10.1638/1042-7260(2000)031[0322:GPOMGG]2.0.CO;2. PubMed DOI
Krief S, et al. Clinical and pathologic manifestation of oesophagostomosis in African great apes: Does self-medication in wild apes influence disease progression? J Med Primatol. 2008;37:188–195. doi: 10.1111/j.1600-0684.2008.00285.x. PubMed DOI
Terio KA, et al. Oesophagostomiasis in non-human primates of Gombe National Park, Tanzania. Am J Primatol. 2016 PubMed PMC
Gasser RB, Woods WG, Huffman MA, Blotkamp J, Polderman AM. Molecular separation of Oesophagostomum stephanostomum and Oesophagostomum bifurcum (Nematoda: Strongyloidea) from non-human primates. Int J Parasitol. 1999;29:1087–1091. doi: 10.1016/S0020-7519(99)00037-5. PubMed DOI
Hasegawa H, et al. Great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8(3):e2715. doi: 10.1371/journal.pntd.0002715. PubMed DOI PMC
Hasegawa H, et al. Molecular features of hookworm larvae (Necator spp.) raised by coproculture from Ugandan chimpanzees and Gabonese gorillas and humans. Parasitol Int. 2017;66:12–15. doi: 10.1016/j.parint.2016.11.003. PubMed DOI
Makouloutou P, et al. Prevalence and genetic diversity of Oesophagostomum stephanostomum in wild lowland gorillas at Moukalaba-Doudou National Park, Gabon. Helminthologia. 2014;51:83–93. doi: 10.2478/s11687-014-0214-y. DOI
Ota N, et al. Molecular identification of Oesophagostomum spp. from “village” chimpanzees in Uganda and their phylogenetic relationship with those of other primates. R Soc Open Sci. 2015;2:150471. doi: 10.1098/rsos.150471. PubMed DOI PMC
Schindler AR, de Gruijter JM, Polderman AM, Gasser RB. Definition of genetic markers in nuclear ribosomal DNA for a neglected parasite of primates, Ternidens deminutus (Nematoda: Strongylida)–diagnostic and epidemiological implications. Parasitology. 2005;131:539–546. doi: 10.1017/S0031182005007936. PubMed DOI
Cibot M, et al. Nodular worm infections in wild non-human primates and humans living in the Sebitoli Area (Kibale National Park, Uganda): Do high spatial proximity favor zoonotic transmission? PLoS Negl Trop Dis. 2015;9(10):e0004133. doi: 10.1371/journal.pntd.0004133. PubMed DOI PMC
Ghai RR, Chapman CA, Omeja PA, Davies TJ, Goldberg TL. Nodule worm infection in humans and wild primates in Uganda: Cryptic species in a newly identified region of human transmission. PLoS Negl Trop Dis. 2014;8(1):e2641. doi: 10.1371/journal.pntd.0002641. PubMed DOI PMC
Deagle B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett. 10(9), 10.1098/rsbl.2014.0562 (2014). PubMed PMC
Narat V, et al. Intestinal helminths of wild bonobos in forest-savanna mosaic: Risk assessment of cross-species transmission with local people in the Democratic Republic of the Congo. Ecohealth. 2015;12:621–633. doi: 10.1007/s10393-015-1058-8. PubMed DOI
Krief S, et al. Nodular worm infection in wild chimpanzees in Western Uganda: A risk for human health? PLoS Negl Trop Dis. 2010;4(3):e630. doi: 10.1371/journal.pntd.0000630. PubMed DOI PMC
Roeber F, Jex AR, Gasser RB. Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. Biotechnol Adv. 2013;31:1135–1152. doi: 10.1016/j.biotechadv.2013.01.008. PubMed DOI PMC
Caldecott, J. & Miles, L. World Atlas of Great Apes and Their Conservation. University of California Press, Oakland, California (2005).
Blouin MS. Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. Int J Parasitol. 2002;32:527–531. doi: 10.1016/S0020-7519(01)00357-5. PubMed DOI
Keith RK. Differentiation of the infective larvae of some common nematodes of cattle. Aust J Zool. 1952;1:223–235. doi: 10.1071/ZO9530223. DOI
Parnell IW. Studies on the bionomics and control of the bursate nematodes of horses and sheep. II. Technique Can J Res. 1936;14:71–81. doi: 10.1139/cjr36d-009. DOI
Rossanigo CE, Gruner L. Moisture and temperature requirements in faeces for the development of free-living stages of gastrointestinal nematodes of sheep, cattle and deer. J Helminthol. 1995;69:357–362. doi: 10.1017/S0022149X00014954. PubMed DOI
Smith G, Schad GA. Ancylostoma duodenale and Necator americanus: effect of temperature on egg development and mortality. Parasitology. 1989;99:127–132. doi: 10.1017/S0031182000061102. PubMed DOI
Udonsi JK, Atata G. Necator americanus: Temperature, pH, light, and larval development, longevity, and desiccation tolerance. Exp Parasitol. 1987;63:136–142. doi: 10.1016/0014-4894(87)90154-8. PubMed DOI
Pafčo, B., et al Gastrointestinal protists and helminths of habituated agile mangabeys (Cercocebus agilis) at Bai Hokou, Central African Republic. Am J Primatol, 10.1002/ajp.22736. PubMed
Stevenson LA, Chilton NB, Gasser RB. Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int J Parasitol. 1995;25:483–488. doi: 10.1016/0020-7519(94)00156-I. PubMed DOI
Hoagland KE, Schad GA. Necator americanus and Ancylostoma duodenale: Life history parameters and epidemiological implications of two sympatric hookworms of humans. Exp Parasitol. 1978;44:36–49. doi: 10.1016/0014-4894(78)90078-4. PubMed DOI
Hamad I, et al. Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Sci Rep. 2014;4:1–9. PubMed PMC
Kalousová B, et al. Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas. Parasit Vectors. 2016;9:75. doi: 10.1186/s13071-016-1357-0. PubMed DOI PMC
De Gruijter JM, Ziem J, Verweij JJ, Polderman AM, Gasser RB. Genetic substructuring within Oesophagostomum bifurcum (nematoda) from human and non-human primates from Ghana based on random amplified polymorphic DNA analysis. Am J Trop Med Hyg. 2004;71:227–233. PubMed
Sak B, et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS ONE. 2013;8(8):e71840. doi: 10.1371/journal.pone.0071840. PubMed DOI PMC
Mapua MI, et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology. 2015;142:890–900. doi: 10.1017/S0031182015000086. PubMed DOI
Devreese, L. Many hands make light work. Foraging strategy of agile mangabeys (Cercocebus agilis) exhibiting a permanent large grouping pattern at Bai Hokou, Central African Republic. University of Antwerp, Antwerp, Belgium (2011). PubMed
Hasegawa, H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms in Primate parasite ecology: The dynamics of host-parasite relationships (ed. Huffman, M. A. & Chapman, C.) 29–46 (Cambridge University Press, 2009).
Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina paired-end read mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC
Callahan, B. J. et al. DADA2: High resolution sample inference from amplicon data. bioRxiv. 0–14 (2015). PubMed PMC
Oksanen, J. Multivariate Analysis of Ecological Communities in R: vegan tutorial (2015).
Wright ES. Using DECIPHERv2.0 to analyze big biological sequence data in R. R J. 2016;8:352–359.
Schliep KP. phangorn: Phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Posada D, Crandall KA. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 28–36 (2016).
Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts
Ecological drivers of helminth infection patterns in the Virunga Massif mountain gorilla population
Variation in diet composition and its relation to gut microbiota in a passerine bird
Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon
Genetic characterization of nodular worm infections in Asian Apes
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study