Shaping the human gut microbiota: The role of canine companionship, lifestyle choices, and Blastocystis sp
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39944406
PubMed Central
PMC11815985
DOI
10.1016/j.onehlt.2025.100979
PII: S2352-7714(25)00015-1
Knihovny.cz E-zdroje
- Klíčová slova
- Blastocystis sp, Dog ownership, Dogs, Gut microbiota, Humans, Lifestyle,
- Publikační typ
- časopisecké články MeSH
External factors affecting composition of the human gut microbiota have attracted considerable attention in recent years. Among these factors, habitat sharing with other humans and companion animals, especially dogs, is considered crucial together with the presence of intestinal protists. The Czech Republic, known for one of the highest rates of dog ownership in Europe, provides an ideal setting for studying such relationships. Here, we investigated the impact of dog ownership and lifestyle factors (residing in cities versus villages) on the gut microbiota (specifically bacteriome). In addition, we also investigated the influence of the common gut protist Blastocystis sp. on the human gut microbiota. Fecal DNAs from 118 humans and 54 dogs were subject to 16S rRNA gene sequencing using the Illumina MiSeq platform. Greater microbial diversity was observed in humans than in dogs. Owning a dog had no significant effect on the alpha and beta diversity of the human microbiota, although some bacterial genera were enriched in dog owners. In relation to lifestyle, urban dwellers had higher levels of Akkermansia, while people living in villages had a more diverse gut microbiota. The presence of Blastocystis sp. in humans correlated with specific microbial patterns, indicating an important role for this micro-eukaryote in the gut ecosystem. These findings highlight the intricate relationship between specific factors and the gut microbiota composition and emphasize the need for more extensive research in this area.
Department of Bacteria Parasites and Fungi Statens Serum Institut Copenhagen Denmark
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno Czech Republic
Zobrazit více v PubMed
Botigué L.R., Song S., Scheu A., Gopalan S., Pendleton A.L., Oetjens M., Taravella A.M., Seregély T., Zeeb-Lanz A., Arbogast R.-M., Bobo D., Daly K., Unterländer M., Burger J., Kidd J.M., Veeramah K.R. Ancient european dog genomes reveal continuity since the early neolithic. Nat. Commun. 2017;8 doi: 10.1038/ncomms16082. PubMed DOI PMC
Ettinger S.J., Feldman E.C. 11th edition. Elsevier; St. Louis, MO, USA: 2017. Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat.
Coelho L.P., Kultima J.R., Costea P.I., Fournier C., Pan Y., Czarnecki-Maulden G., Hayward M.R., Forslund S.K., Schmidt T.S.B., Descombes P., Jackson J.R., Li Q., Bork P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:72. doi: 10.1186/s40168-018-0450-3. PubMed DOI PMC
Gómez-Gallego C., Forsgren M., Selma-Royo M., Nermes M., Carmen Collado M., Salminen S., Beasley S., Isolauri E. The composition and diversity of the gut microbiota in children is modifiable by the household dogs: impact of a canine-specific probiotic. Microorganisms. 2021;9:557. doi: 10.3390/microorganisms9030557. PubMed DOI PMC
Arenas-Montes J., Perez-Martinez P., Vals-Delgado C., Romero-Cabrera J.L., Cardelo M.P., Leon-Acuña A., Quintana-Navarro G.M., Alcala-Diaz J.F., Lopez-Miranda J., Camargo A., Perez-Jimenez F. Owning a pet is associated with changes in the composition of gut microbiota and could influence the risk of metabolic disorders in humans. Animals. 2021;11:2347. doi: 10.3390/ani11082347. PubMed DOI PMC
Kates A.E., Jarrett O., Skarlupka J.H., Sethi A., Duster M., Watson L., Suen G., Poulsen K., Safdar N. Household pet ownership and the microbial diversity of the human gut microbiota. Front. Cell. Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.00073. PubMed DOI PMC
Jiang C., Cui Z., Fan P., Du G. Effects of dog ownership on the gut microbiota of elderly owners. PloS One. 2022;17 doi: 10.1371/journal.pone.0278105. PubMed DOI PMC
Rosas-Plaza S., Hernández-Terán A., Navarro-Díaz M., Escalante A.E., Morales-Espinosa R., Cerritos R. Human gut microbiome across different lifestyles: from hunter-gatherers to urban populations. Front. Microbiol. 2022;26 doi: 10.3389/fmicb.2022.843170. PubMed DOI PMC
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., Biddinger S.B., Dutton R.J., Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Moles L., Otaegui D. The impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation? Nutrients. 2020;12:1654. doi: 10.3390/nu12061654. PubMed DOI PMC
Nova E., Gómez-Martinez S., González-Soltero R. The influence of dietary factors on the gut microbiota. Microorganisms. 2022;10:1368. doi: 10.3390/microorganisms10071368. PubMed DOI PMC
Krogsgaard L.R., Andersen L.O.B., Johannesen T.B., Engsbro A.L., Stensvold C.R., Nielsen H.V., Bytzer P. Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clin. Transl. Gastroenterol. 2018;9:161. doi: 10.1038/s41424-018-0027-2. PubMed DOI PMC
Nieves-Ramírez M.E., Partida-Rodríguez O., Laforest-Lapointe I., Reynolds L.A., Brown E.M., Valdez-Salazar A., Morán-Silva P., Rojas-Velázquez L., Morien E., Parfrey L.W., Jin M., Walter J., Torres J., Arrieta M.C., Ximénez-García C., Finlay B.B. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. MSystems. 2018;3 doi: 10.1128/mSystems.00007-18. PubMed DOI PMC
Gotfred-Rasmussen H., Stensvold C.R., Ingham A.C., Johannesen T.B., Andersen L.O., Röser D., Nielsen H.V. Impact of metronidazole treatment and Dientamoeba fragilis colonization on gut microbiota diversity. J. Pediatr. Gastroenterol. Nutr. 2021;73:23–29. doi: 10.1097/MPG.0000000000003096. PubMed DOI
Stensvold C.R., Sørland B.A., Berg R.P.K.D., Andersen L.O., van der Giezen M., Bowtell J.L., El-Badry A.A., Belkessa S., Kurt Ö., Nielsen H.V. Stool microbiota diversity analysis of Blastocystis-positive and Blastocystis-negative individuals. Microorganisms. 2022;10:4–9. doi: 10.3390/microorganisms10020326. PubMed DOI PMC
Lukeš J., Stensvold C.R., Jirků-Pomajbíková K., Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 2015;11:7–12. doi: 10.1371/journal.ppat.1005039. PubMed DOI PMC
Rook G., Bäckhed F., Levin B.R., McFall-Ngai M.J., McLean A.R. Evolution, human-microbe interactions, and life history plasticity. Lancet. 2017;390:521–530. doi: 10.1016/S0140-6736(17)30566-4. PubMed DOI
Wang B., Yao M., Lv L., Ling Z., Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82. doi: 10.1016/J.ENG.2017.01.008. DOI
Tomiak J., Stensvold C.R. Accelerating the paradigm shift in Blastocystis research. Trends Parasitol. 2024;40:775–776. doi: 10.1016/j.pt.2024.07.006. PubMed DOI
Scanlan P.D., Stensvold C.R., Rajilić-Stojanović M., Heilig H.G.H.J., De Vos W.M., O’Toole P.W., Cotter P.D. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol. Ecol. 2014;90:326–330. doi: 10.1111/1574-6941.12396. PubMed DOI
El Safadi D., Cian A., Nourrisson C., Pereira B., Morelle C., Bastien P., Bellanger A., Botterel F., Candolfi E., Desoubeaux G., Lachaud L., Morio F., Pomares C., Rabodonirina M., Wawrzyniak I., Delbac F., Gantois N. Prevalence, risk factors for infection and subtype distribution of the intestinal parasite Blastocystis sp. from a large-scale multi-center study in France. BMC Infect. Dis. 2016;16:451. doi: 10.1186/s12879-016-1776-8. PubMed DOI PMC
Lhotská Z., Jirků M., Hložková O., Brožová K., Jirsová D., Stensvold C.R., Kolísko M., Jirků Pomajbíková K. A study on the prevalence and subtype diversity of the intestinal protist Blastocystis sp. in a gut-healthy human population in the Czech Republic. Front. Cell. Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.544335. PubMed DOI PMC
Lepczyńska M., Dzika E., Chen W.C. Prevalence of Blastocystis subtypes in healthy volunteers in northeastern Poland. J. Parasitol. 2021;107:684–688. doi: 10.1645/20-170. PubMed DOI
Petersen A.M., Stensvold C.R., Mirsepasi H., Engberg J., Friis-Moller A., Porsbo L.J., Hammerum A.M., Nordgaard-Lassen I., Nielsen H.V., Krogfelt K.A. Active ulcerative colitis associated with low prevalence of Blastocystis and Dientamoeba fragilis infection. Scand. J. Gastroenterol. 2013;48:638–639. doi: 10.3109/00365521.2013.780094. PubMed DOI
Krogsgaard L.R., Engsbro A.L., Stensvold C.R., Nielsen H.V., Bytzer P. The prevalence of intestinal parasites is not greater among individuals with irritable bowel syndrome: a population-based case-control study. Clin. Gastroenterol. Hepatol. 2015;13:507–513. doi: 10.1016/j.cgh.2014.07.065. PubMed DOI
Rossen N.G., Bart A., Verhaar N., van Nood E., Kootte R., de Groot P.F., D’Haens G.R., Ponsioen C.Y., van Gool T. Low prevalence of Blastocystis sp. in active ulcerative colitis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1039–1044. doi: 10.1007/s10096-015-2312-2. PubMed DOI PMC
Beghini F., Pasolli E., Truong T.D., Putignani L., Cacciò S.M., Segata N. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. ISME J. 2017;11:2848–2863. doi: 10.1038/ismej.2017.139. PubMed DOI PMC
Audebert C., Even G., Cian A., Loywick A., Merlin S., Viscogliosi E., Chabé M. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep25255. PubMed DOI PMC
Kodio A., Coulibaly D., Koné A.K., Konaté S., Doumbo S., Guindo A., Bittar F., Gouriet F., Raoult D., Thera M.A., Ranque S. Blastocystis colonization is associated with increased diversity and altered gut bacterial communities in healthy malian children. Microorganisms. 2019;7:649. doi: 10.3390/microorganisms7120649. PubMed DOI PMC
Even G., Lokmer A., Rodrigues J., Audebert C., Viscogliosi E., Ségurel L., Chabé M. Changes in the human gut microbiota associated with colonization by Blastocystis sp. and Entamoeba spp. in non-industrialized populations. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.533528. PubMed DOI PMC
Šloufová M., Lhotská Z., Jirků M., Petrželková K.J., Stensvold C.R., Cinek O., Pomajbíková K.J. Comparison of molecular diagnostic approaches for the detection and differentiation of the intestinal protist Blastocystis sp. in humans. Parasite. 2022;29:30. doi: 10.1051/parasite/2022029. PubMed DOI PMC
Pafčo B., Čížková D., Kreisinger J., Hasegawa H., Vallo P., Shutt K., Todd A., Petrželková K.J., Modrý D. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 2018;8:5933. doi: 10.1038/s41598-018-24126-3. PubMed DOI PMC
Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; 2021. R: A Language and Environment for Statistical Computing.
McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013;8 doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Oksanen J., Simpson G., Blanchet F.G., Kindt R., Legendre P., Minchin P., hara R., Solymos P., Stevens H., Szöcs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., De Cáceres M., Durand S., Weedon J. 2022. vegan Community Ecology Package Version 2.6–2 April 2022.
Wickham H. Springer-Verlag; New York: 2016. ggplot2: Elegant Graphics for Data Analysis.
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621.
Beals E.W. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 1984;14:1–55.
Gower J.C. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd; 2015. Principal coordinates analysis; pp. 1–7. DOI
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Bork P., Ehrlich S.D., Wang J., Antolin M., Artiguenave F., Blottiere H., Borruel N., Bruls T., Casellas F., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Forte M., Friss C., Van De Guchte M., Guedon E., Haimet F., Jamet A., Juste C., Kaci G., Kleerebezem M., Knol J., Kristensen M., Layec S., Le Roux K., Leclerc M., Maguin E., Melo Minardi R., Oozeer R., Rescigno M., Sanchez N., Tims S., Torrejon T., Varela E., De Vos W., Winogradsky Y., Zoetendal E. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019;76:473–493. doi: 10.1007/s00018-018-2943-4. PubMed DOI PMC
Stojanov S., Berlec A., Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715. doi: 10.3390/microorganisms8111715. PubMed DOI PMC
An J., Kwon H., Kim Y.J. The Firmicutes/Bacteroidetes ratio as a risk factor of breast cancer. J. Clin. Med. 2023;12:2216. doi: 10.3390/jcm12062216. PubMed DOI PMC
You I.W., Kim M.J. Comparison of gut microbiota of 96 healthy dogs by individual traits: breed, age, and body condition score. Animals. 2021;11:2432. doi: 10.3390/ani11082432. PubMed DOI PMC
Bermingham E.N., Young W., Kittelmann S., Kerr K.R., Swanson K.S., Roy N.C., Thomas D.G. Dietary format alters fecal bacterial populations in the domestic cat (Felis catus) MicrobiologyOpen. 2013;2:173–181. doi: 10.1002/mbo3.60. PubMed DOI PMC
Vital M., Gao J., Rizzo M., Harrison T., Tiedje J.M. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J. 2015;9:832–843. doi: 10.1038/ismej.2014.179. PubMed DOI PMC
Middelbos I.S., Vester Boler B.M., Qu A., White B.A., Swanson K.S., Fahey G.C.J. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PloS One. 2010;5 doi: 10.1371/journal.pone.0009768. PubMed DOI PMC
Schmidt M., Unterer S., Suchodolski J.S., Honneffer J.B., Guard B.C., Lidbury J.A., Steiner J.M., Fritz J., Kölle P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PloS One. 2018;13 doi: 10.1371/journal.pone.0201279. PubMed DOI PMC
Pilla R., Suchodolski J.S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 2020;6:498. doi: 10.3389/fvets.2019.00498. PubMed DOI PMC
Kim K.-R., Kim S.-M., Kim J.-H. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front. Vet. Sci. 2023;10 doi: 10.3389/fvets.2023.1241215. PubMed DOI PMC
Suchodolski J.S., Markel M.E., Garcia-Mazcorro J.F., Unterer S., Heilmann R.M., Dowd S.E., Kachroo P., Ivanov I., Minamoto Y., Dillman E.M., Steiner J.M., Cook A.K., Toresson L. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PloS One. 2012;7 doi: 10.1371/journal.pone.0051907. PubMed DOI PMC
Powell L., Chia D., McGreevy P., Podberscek A.L., Edwards K.M., Neilly B., Guastella A.J., Lee V., Stamatakis E. Expectations for dog ownership: perceived physical, mental and psychosocial health consequences among prospective adopters. PloS One. 2018;13 doi: 10.1371/journal.pone.0200276. PubMed DOI PMC
Merkouri A., Graham T.M., O’Haire M.E., Purewal R., Westgarth C. Dogs and the good life: a cross-sectional study of the association between the dog–owner relationship and owner mental wellbeing. Front. Psychol. 2022;13 doi: 10.3389/fpsyg.2022.903647. PubMed DOI PMC
Redding L.E., Kelly B.J., Stefanovski D., Lautenbach J.K., Tolomeo P., Cressman L., Gruber E., Meily P., Lautenbach E. Pet ownership protects against recurrence of Clostridioides difficile infection. Open Forum Infect. Dis. 2020;7 doi: 10.1093/ofid/ofz541. PubMed DOI PMC
Zoratti E., Panzer A., Sitarik A., Jones K., Wegienka G., Havstad S., Lukacs N., Boushey H., Johnson C.C., Ownby D., Lynch S. Prenatal indoor dog exposure and early life gut microbiota in the microbes, asthma, allergy and pets birth cohort. J. Allergy Clin. Immunol. 2020;145 doi: 10.1016/j.jaci.2019.12.325. DOI
Jha A.R., Davenport E.R., Gautam Y., Bhandari D., Tandukar S., Ng K.M., Fragiadakis G.K., Holmes S., Gautam G.P., Leach J., Sherchand J.B., Bustamante C.D., Sonnenburg J.L. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 2018;16 doi: 10.1371/journal.pbio.2005396. PubMed DOI PMC
Menni C., Hernandez M.M., Vital M., Mohney R.P., Spector T.D., Valdes A.M. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes. 2019;10:688–695. doi: 10.1080/19490976.2019.1586038. PubMed DOI PMC
Hamamah S., Aghazarian A., Nazaryan A., Hajnal A., Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10:436. doi: 10.3390/biomedicines10020436. PubMed DOI PMC
Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8:573. doi: 10.3390/microorganisms8040573. PubMed DOI PMC
Wang Y., Xu Y., Yang M., Zhang M., Xiao M., Li X. Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells. J. Bioenerg. Biomembr. 2020;52:247–256. doi: 10.1007/s10863-020-09841-9. PubMed DOI
Wang R.X., Lee J.S., Campbell E.L., Colgan S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. U. S. A. 2020;117:11648–11657. doi: 10.1073/pnas.1917597117. PubMed DOI PMC
Lewis K., Lutgendorff F., Phan V., Söderholm J.D., Sherman P.M., McKay D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel Dis. 2009;16:1138–1148. doi: 10.1002/ibd.21177. PubMed DOI
Rivera-Chávez F., Lopez C.A., Bäumler A.J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 2017;105:93–101. doi: 10.1016/j.freeradbiomed.2016.09.022. PubMed DOI
Rivera-Chávez F., Zhang L.F., Faber F., Lopez C.A., Byndloss M.X., Olsan E.E., Xu G., Velazquez E.M., Lebrilla C.B., Winter S.E., Bäumler A.J. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe. 2016;19:443–454. doi: 10.1016/j.chom.2016.03.004. PubMed DOI PMC
Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J.M., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC
Nomura K., Ishikawa D., Okahara K., Ito S., Haga K., Takahashi M., Arakawa A., Shibuya T., Osada T., Kuwahara-Arai K., Kirikae T., Nagahara A. Bacteroidetes species are correlated with disease activity in ulcerative colitis. J. Clin. Med. 2021;10:1749. doi: 10.3390/jcm10081749. PubMed DOI PMC
Nazarinejad N., Hajikhani B., Vaezi A.A., Firoozeh F., Sameni F., Yaslianifard S., Goudarzi M., Dadashi M. Association between colorectal cancer, the frequency of Bacteroides fragilis, and the level of mismatch repair genes expression in the biopsy samples of Iranian patients. BMC Gastroenterol. 2024;24:82. doi: 10.1186/s12876-024-03169-z. PubMed DOI PMC
Wu L., Park S.-H., Kim H. Direct and indirect evidence of effects of Bacteroides spp. on obesity and inflammation. Int. J. Mol. Sci. 2024;25:438. doi: 10.3390/ijms25010438. PubMed DOI PMC
Zhai Q., Feng S., Arjan N., Chen W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019;59:3227–3236. doi: 10.1080/10408398.2018.1517725. PubMed DOI
Jian H., Liu Y., Wang X., Dong X., Zou X. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut-liver-brain axes? Int. J. Mol. Sci. 2023;24:3900. doi: 10.3390/ijms24043900. PubMed DOI PMC
Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC
Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI
Yarlagadda K., Zachwieja A.J., de Flamingh A., Phungviwatnikul T., Rivera-Colón A.G., Roseman C., Shackelford L., Swanson K.S., Malhi R.S. Geographically diverse canid sampling provides novel insights into pre-industrial microbiomes. Proc. R. Soc. B Biol. Sci. 2022;289 doi: 10.1098/rspb.2022.0052. PubMed DOI PMC
Pujo J., Petitfils C., Le Faouder P., Eeckhaut V., Payros G., Maurel S., Perez-Berezo T., Van Hul M., Barreau F., Blanpied C., Chavanas S., Van Immerseel F., Bertrand-Michel J., Oswald E., Knauf C., Dietrich G., Cani P.D., Cenac N. Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut. 2021;70:1088–1097. doi: 10.1136/gutjnl-2020-321173. PubMed DOI
Deng L., Wojciech L., Gascoigne N.R.J., Peng G., Tan K.S.W. New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLoS Pathog. 2021;17 doi: 10.1371/journal.ppat.1009253. PubMed DOI PMC
Billy V., Lhotská Z., Jirků M., Kadlecová O., Frgelecová L., Parfrey L.W., Jirků-Pomajbíková K. Blastocystis colonization alters the gut microbiome and, in some cases, promotes faster recovery from induced colitis. Front. Microbiol. 2021;7 PubMed PMC
Andersen L.O.B., Bonde I., Nielsen H.B.H.B., Stensvold C.R. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol. Ecol. 2015;91 doi: 10.1093/femsec/fiv072. PubMed DOI
Tito R.Y., Chaffron S., Caenepeel C., Lima-Mendez G., Wang J., Vieira-Silva S., Falony G., Hildebrand F., Darzi Y., Rymenans L., Verspecht C., Bork P., Vermeire S., Joossens M., Raes J. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68:1180–1189. doi: 10.1136/gutjnl-2018-316106. PubMed DOI PMC
Huang L.S., Yeh Y.M., Chiu S.F., Huang P.J., Chu L.J., Huang C.Y., Cheng F.W., Chen L.C., Lin H.C., Shih Y.W., Lin W.N., Huang K.Y. Intestinal microbiota analysis of different Blastocystis subtypes and Blastocystis-negative individuals in Taiwan. Biom. J. 2024;47 doi: 10.1016/j.bj.2023.100661. PubMed DOI PMC
You C., Jirků M., Corcoran D.L., Parker W., Jirků-Pomajbíková K. Altered gut ecosystems plus the microbiota’s potential for rapid evolution: a recipe for inevitable change with unknown consequences. Computat. Struct. Biotechnol. J. 2021;19:5969–5977. doi: 10.1016/j.csbj.2021.10.033. PubMed DOI PMC
Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., Sinha R., Gilroy E., Gupta K., Baldassano R., Nessel L., Li H., Bushman F.D., Lewis J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 2011;334:105–108. doi: 10.1126/science.1208344. PubMed DOI PMC
Prasoodanan V., P. K, Sharma A.K., Mahajan S., Dhakan D.B., Maji A., Scaria J., Sharma V.K. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth–gut axis. Npj Biofilms Microbiomes. 2021;7:1–17. doi: 10.1038/s41522-021-00248-x. PubMed DOI PMC