Shaping the human gut microbiota: The role of canine companionship, lifestyle choices, and Blastocystis sp

. 2025 Jun ; 20 () : 100979. [epub] 20250125

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39944406
Odkazy

PubMed 39944406
PubMed Central PMC11815985
DOI 10.1016/j.onehlt.2025.100979
PII: S2352-7714(25)00015-1
Knihovny.cz E-zdroje

External factors affecting composition of the human gut microbiota have attracted considerable attention in recent years. Among these factors, habitat sharing with other humans and companion animals, especially dogs, is considered crucial together with the presence of intestinal protists. The Czech Republic, known for one of the highest rates of dog ownership in Europe, provides an ideal setting for studying such relationships. Here, we investigated the impact of dog ownership and lifestyle factors (residing in cities versus villages) on the gut microbiota (specifically bacteriome). In addition, we also investigated the influence of the common gut protist Blastocystis sp. on the human gut microbiota. Fecal DNAs from 118 humans and 54 dogs were subject to 16S rRNA gene sequencing using the Illumina MiSeq platform. Greater microbial diversity was observed in humans than in dogs. Owning a dog had no significant effect on the alpha and beta diversity of the human microbiota, although some bacterial genera were enriched in dog owners. In relation to lifestyle, urban dwellers had higher levels of Akkermansia, while people living in villages had a more diverse gut microbiota. The presence of Blastocystis sp. in humans correlated with specific microbial patterns, indicating an important role for this micro-eukaryote in the gut ecosystem. These findings highlight the intricate relationship between specific factors and the gut microbiota composition and emphasize the need for more extensive research in this area.

Zobrazit více v PubMed

Botigué L.R., Song S., Scheu A., Gopalan S., Pendleton A.L., Oetjens M., Taravella A.M., Seregély T., Zeeb-Lanz A., Arbogast R.-M., Bobo D., Daly K., Unterländer M., Burger J., Kidd J.M., Veeramah K.R. Ancient european dog genomes reveal continuity since the early neolithic. Nat. Commun. 2017;8 doi: 10.1038/ncomms16082. PubMed DOI PMC

Ettinger S.J., Feldman E.C. 11th edition. Elsevier; St. Louis, MO, USA: 2017. Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat.

Coelho L.P., Kultima J.R., Costea P.I., Fournier C., Pan Y., Czarnecki-Maulden G., Hayward M.R., Forslund S.K., Schmidt T.S.B., Descombes P., Jackson J.R., Li Q., Bork P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:72. doi: 10.1186/s40168-018-0450-3. PubMed DOI PMC

Gómez-Gallego C., Forsgren M., Selma-Royo M., Nermes M., Carmen Collado M., Salminen S., Beasley S., Isolauri E. The composition and diversity of the gut microbiota in children is modifiable by the household dogs: impact of a canine-specific probiotic. Microorganisms. 2021;9:557. doi: 10.3390/microorganisms9030557. PubMed DOI PMC

Arenas-Montes J., Perez-Martinez P., Vals-Delgado C., Romero-Cabrera J.L., Cardelo M.P., Leon-Acuña A., Quintana-Navarro G.M., Alcala-Diaz J.F., Lopez-Miranda J., Camargo A., Perez-Jimenez F. Owning a pet is associated with changes in the composition of gut microbiota and could influence the risk of metabolic disorders in humans. Animals. 2021;11:2347. doi: 10.3390/ani11082347. PubMed DOI PMC

Kates A.E., Jarrett O., Skarlupka J.H., Sethi A., Duster M., Watson L., Suen G., Poulsen K., Safdar N. Household pet ownership and the microbial diversity of the human gut microbiota. Front. Cell. Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.00073. PubMed DOI PMC

Jiang C., Cui Z., Fan P., Du G. Effects of dog ownership on the gut microbiota of elderly owners. PloS One. 2022;17 doi: 10.1371/journal.pone.0278105. PubMed DOI PMC

Rosas-Plaza S., Hernández-Terán A., Navarro-Díaz M., Escalante A.E., Morales-Espinosa R., Cerritos R. Human gut microbiome across different lifestyles: from hunter-gatherers to urban populations. Front. Microbiol. 2022;26 doi: 10.3389/fmicb.2022.843170. PubMed DOI PMC

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., Biddinger S.B., Dutton R.J., Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC

Moles L., Otaegui D. The impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation? Nutrients. 2020;12:1654. doi: 10.3390/nu12061654. PubMed DOI PMC

Nova E., Gómez-Martinez S., González-Soltero R. The influence of dietary factors on the gut microbiota. Microorganisms. 2022;10:1368. doi: 10.3390/microorganisms10071368. PubMed DOI PMC

Krogsgaard L.R., Andersen L.O.B., Johannesen T.B., Engsbro A.L., Stensvold C.R., Nielsen H.V., Bytzer P. Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clin. Transl. Gastroenterol. 2018;9:161. doi: 10.1038/s41424-018-0027-2. PubMed DOI PMC

Nieves-Ramírez M.E., Partida-Rodríguez O., Laforest-Lapointe I., Reynolds L.A., Brown E.M., Valdez-Salazar A., Morán-Silva P., Rojas-Velázquez L., Morien E., Parfrey L.W., Jin M., Walter J., Torres J., Arrieta M.C., Ximénez-García C., Finlay B.B. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. MSystems. 2018;3 doi: 10.1128/mSystems.00007-18. PubMed DOI PMC

Gotfred-Rasmussen H., Stensvold C.R., Ingham A.C., Johannesen T.B., Andersen L.O., Röser D., Nielsen H.V. Impact of metronidazole treatment and Dientamoeba fragilis colonization on gut microbiota diversity. J. Pediatr. Gastroenterol. Nutr. 2021;73:23–29. doi: 10.1097/MPG.0000000000003096. PubMed DOI

Stensvold C.R., Sørland B.A., Berg R.P.K.D., Andersen L.O., van der Giezen M., Bowtell J.L., El-Badry A.A., Belkessa S., Kurt Ö., Nielsen H.V. Stool microbiota diversity analysis of Blastocystis-positive and Blastocystis-negative individuals. Microorganisms. 2022;10:4–9. doi: 10.3390/microorganisms10020326. PubMed DOI PMC

Lukeš J., Stensvold C.R., Jirků-Pomajbíková K., Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 2015;11:7–12. doi: 10.1371/journal.ppat.1005039. PubMed DOI PMC

Rook G., Bäckhed F., Levin B.R., McFall-Ngai M.J., McLean A.R. Evolution, human-microbe interactions, and life history plasticity. Lancet. 2017;390:521–530. doi: 10.1016/S0140-6736(17)30566-4. PubMed DOI

Wang B., Yao M., Lv L., Ling Z., Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82. doi: 10.1016/J.ENG.2017.01.008. DOI

Tomiak J., Stensvold C.R. Accelerating the paradigm shift in Blastocystis research. Trends Parasitol. 2024;40:775–776. doi: 10.1016/j.pt.2024.07.006. PubMed DOI

Scanlan P.D., Stensvold C.R., Rajilić-Stojanović M., Heilig H.G.H.J., De Vos W.M., O’Toole P.W., Cotter P.D. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol. Ecol. 2014;90:326–330. doi: 10.1111/1574-6941.12396. PubMed DOI

El Safadi D., Cian A., Nourrisson C., Pereira B., Morelle C., Bastien P., Bellanger A., Botterel F., Candolfi E., Desoubeaux G., Lachaud L., Morio F., Pomares C., Rabodonirina M., Wawrzyniak I., Delbac F., Gantois N. Prevalence, risk factors for infection and subtype distribution of the intestinal parasite Blastocystis sp. from a large-scale multi-center study in France. BMC Infect. Dis. 2016;16:451. doi: 10.1186/s12879-016-1776-8. PubMed DOI PMC

Lhotská Z., Jirků M., Hložková O., Brožová K., Jirsová D., Stensvold C.R., Kolísko M., Jirků Pomajbíková K. A study on the prevalence and subtype diversity of the intestinal protist Blastocystis sp. in a gut-healthy human population in the Czech Republic. Front. Cell. Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.544335. PubMed DOI PMC

Lepczyńska M., Dzika E., Chen W.C. Prevalence of Blastocystis subtypes in healthy volunteers in northeastern Poland. J. Parasitol. 2021;107:684–688. doi: 10.1645/20-170. PubMed DOI

Petersen A.M., Stensvold C.R., Mirsepasi H., Engberg J., Friis-Moller A., Porsbo L.J., Hammerum A.M., Nordgaard-Lassen I., Nielsen H.V., Krogfelt K.A. Active ulcerative colitis associated with low prevalence of Blastocystis and Dientamoeba fragilis infection. Scand. J. Gastroenterol. 2013;48:638–639. doi: 10.3109/00365521.2013.780094. PubMed DOI

Krogsgaard L.R., Engsbro A.L., Stensvold C.R., Nielsen H.V., Bytzer P. The prevalence of intestinal parasites is not greater among individuals with irritable bowel syndrome: a population-based case-control study. Clin. Gastroenterol. Hepatol. 2015;13:507–513. doi: 10.1016/j.cgh.2014.07.065. PubMed DOI

Rossen N.G., Bart A., Verhaar N., van Nood E., Kootte R., de Groot P.F., D’Haens G.R., Ponsioen C.Y., van Gool T. Low prevalence of Blastocystis sp. in active ulcerative colitis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1039–1044. doi: 10.1007/s10096-015-2312-2. PubMed DOI PMC

Beghini F., Pasolli E., Truong T.D., Putignani L., Cacciò S.M., Segata N. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. ISME J. 2017;11:2848–2863. doi: 10.1038/ismej.2017.139. PubMed DOI PMC

Audebert C., Even G., Cian A., Loywick A., Merlin S., Viscogliosi E., Chabé M. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep25255. PubMed DOI PMC

Kodio A., Coulibaly D., Koné A.K., Konaté S., Doumbo S., Guindo A., Bittar F., Gouriet F., Raoult D., Thera M.A., Ranque S. Blastocystis colonization is associated with increased diversity and altered gut bacterial communities in healthy malian children. Microorganisms. 2019;7:649. doi: 10.3390/microorganisms7120649. PubMed DOI PMC

Even G., Lokmer A., Rodrigues J., Audebert C., Viscogliosi E., Ségurel L., Chabé M. Changes in the human gut microbiota associated with colonization by Blastocystis sp. and Entamoeba spp. in non-industrialized populations. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.533528. PubMed DOI PMC

Šloufová M., Lhotská Z., Jirků M., Petrželková K.J., Stensvold C.R., Cinek O., Pomajbíková K.J. Comparison of molecular diagnostic approaches for the detection and differentiation of the intestinal protist Blastocystis sp. in humans. Parasite. 2022;29:30. doi: 10.1051/parasite/2022029. PubMed DOI PMC

Pafčo B., Čížková D., Kreisinger J., Hasegawa H., Vallo P., Shutt K., Todd A., Petrželková K.J., Modrý D. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 2018;8:5933. doi: 10.1038/s41598-018-24126-3. PubMed DOI PMC

Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC

R Core Team . R Foundation for Statistical Computing; 2021. R: A Language and Environment for Statistical Computing.

McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013;8 doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Oksanen J., Simpson G., Blanchet F.G., Kindt R., Legendre P., Minchin P., hara R., Solymos P., Stevens H., Szöcs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., De Cáceres M., Durand S., Weedon J. 2022. vegan Community Ecology Package Version 2.6–2 April 2022.

Wickham H. Springer-Verlag; New York: 2016. ggplot2: Elegant Graphics for Data Analysis.

Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952;47:583–621.

Beals E.W. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 1984;14:1–55.

Gower J.C. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd; 2015. Principal coordinates analysis; pp. 1–7. DOI

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Bork P., Ehrlich S.D., Wang J., Antolin M., Artiguenave F., Blottiere H., Borruel N., Bruls T., Casellas F., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Forte M., Friss C., Van De Guchte M., Guedon E., Haimet F., Jamet A., Juste C., Kaci G., Kleerebezem M., Knol J., Kristensen M., Layec S., Le Roux K., Leclerc M., Maguin E., Melo Minardi R., Oozeer R., Rescigno M., Sanchez N., Tims S., Torrejon T., Varela E., De Vos W., Winogradsky Y., Zoetendal E. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019;76:473–493. doi: 10.1007/s00018-018-2943-4. PubMed DOI PMC

Stojanov S., Berlec A., Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715. doi: 10.3390/microorganisms8111715. PubMed DOI PMC

An J., Kwon H., Kim Y.J. The Firmicutes/Bacteroidetes ratio as a risk factor of breast cancer. J. Clin. Med. 2023;12:2216. doi: 10.3390/jcm12062216. PubMed DOI PMC

You I.W., Kim M.J. Comparison of gut microbiota of 96 healthy dogs by individual traits: breed, age, and body condition score. Animals. 2021;11:2432. doi: 10.3390/ani11082432. PubMed DOI PMC

Bermingham E.N., Young W., Kittelmann S., Kerr K.R., Swanson K.S., Roy N.C., Thomas D.G. Dietary format alters fecal bacterial populations in the domestic cat (Felis catus) MicrobiologyOpen. 2013;2:173–181. doi: 10.1002/mbo3.60. PubMed DOI PMC

Vital M., Gao J., Rizzo M., Harrison T., Tiedje J.M. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J. 2015;9:832–843. doi: 10.1038/ismej.2014.179. PubMed DOI PMC

Middelbos I.S., Vester Boler B.M., Qu A., White B.A., Swanson K.S., Fahey G.C.J. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PloS One. 2010;5 doi: 10.1371/journal.pone.0009768. PubMed DOI PMC

Schmidt M., Unterer S., Suchodolski J.S., Honneffer J.B., Guard B.C., Lidbury J.A., Steiner J.M., Fritz J., Kölle P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PloS One. 2018;13 doi: 10.1371/journal.pone.0201279. PubMed DOI PMC

Pilla R., Suchodolski J.S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 2020;6:498. doi: 10.3389/fvets.2019.00498. PubMed DOI PMC

Kim K.-R., Kim S.-M., Kim J.-H. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front. Vet. Sci. 2023;10 doi: 10.3389/fvets.2023.1241215. PubMed DOI PMC

Suchodolski J.S., Markel M.E., Garcia-Mazcorro J.F., Unterer S., Heilmann R.M., Dowd S.E., Kachroo P., Ivanov I., Minamoto Y., Dillman E.M., Steiner J.M., Cook A.K., Toresson L. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PloS One. 2012;7 doi: 10.1371/journal.pone.0051907. PubMed DOI PMC

Powell L., Chia D., McGreevy P., Podberscek A.L., Edwards K.M., Neilly B., Guastella A.J., Lee V., Stamatakis E. Expectations for dog ownership: perceived physical, mental and psychosocial health consequences among prospective adopters. PloS One. 2018;13 doi: 10.1371/journal.pone.0200276. PubMed DOI PMC

Merkouri A., Graham T.M., O’Haire M.E., Purewal R., Westgarth C. Dogs and the good life: a cross-sectional study of the association between the dog–owner relationship and owner mental wellbeing. Front. Psychol. 2022;13 doi: 10.3389/fpsyg.2022.903647. PubMed DOI PMC

Redding L.E., Kelly B.J., Stefanovski D., Lautenbach J.K., Tolomeo P., Cressman L., Gruber E., Meily P., Lautenbach E. Pet ownership protects against recurrence of Clostridioides difficile infection. Open Forum Infect. Dis. 2020;7 doi: 10.1093/ofid/ofz541. PubMed DOI PMC

Zoratti E., Panzer A., Sitarik A., Jones K., Wegienka G., Havstad S., Lukacs N., Boushey H., Johnson C.C., Ownby D., Lynch S. Prenatal indoor dog exposure and early life gut microbiota in the microbes, asthma, allergy and pets birth cohort. J. Allergy Clin. Immunol. 2020;145 doi: 10.1016/j.jaci.2019.12.325. DOI

Jha A.R., Davenport E.R., Gautam Y., Bhandari D., Tandukar S., Ng K.M., Fragiadakis G.K., Holmes S., Gautam G.P., Leach J., Sherchand J.B., Bustamante C.D., Sonnenburg J.L. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 2018;16 doi: 10.1371/journal.pbio.2005396. PubMed DOI PMC

Menni C., Hernandez M.M., Vital M., Mohney R.P., Spector T.D., Valdes A.M. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes. 2019;10:688–695. doi: 10.1080/19490976.2019.1586038. PubMed DOI PMC

Hamamah S., Aghazarian A., Nazaryan A., Hajnal A., Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10:436. doi: 10.3390/biomedicines10020436. PubMed DOI PMC

Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8:573. doi: 10.3390/microorganisms8040573. PubMed DOI PMC

Wang Y., Xu Y., Yang M., Zhang M., Xiao M., Li X. Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells. J. Bioenerg. Biomembr. 2020;52:247–256. doi: 10.1007/s10863-020-09841-9. PubMed DOI

Wang R.X., Lee J.S., Campbell E.L., Colgan S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. U. S. A. 2020;117:11648–11657. doi: 10.1073/pnas.1917597117. PubMed DOI PMC

Lewis K., Lutgendorff F., Phan V., Söderholm J.D., Sherman P.M., McKay D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel Dis. 2009;16:1138–1148. doi: 10.1002/ibd.21177. PubMed DOI

Rivera-Chávez F., Lopez C.A., Bäumler A.J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 2017;105:93–101. doi: 10.1016/j.freeradbiomed.2016.09.022. PubMed DOI

Rivera-Chávez F., Zhang L.F., Faber F., Lopez C.A., Byndloss M.X., Olsan E.E., Xu G., Velazquez E.M., Lebrilla C.B., Winter S.E., Bäumler A.J. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe. 2016;19:443–454. doi: 10.1016/j.chom.2016.03.004. PubMed DOI PMC

Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J.M., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC

Nomura K., Ishikawa D., Okahara K., Ito S., Haga K., Takahashi M., Arakawa A., Shibuya T., Osada T., Kuwahara-Arai K., Kirikae T., Nagahara A. Bacteroidetes species are correlated with disease activity in ulcerative colitis. J. Clin. Med. 2021;10:1749. doi: 10.3390/jcm10081749. PubMed DOI PMC

Nazarinejad N., Hajikhani B., Vaezi A.A., Firoozeh F., Sameni F., Yaslianifard S., Goudarzi M., Dadashi M. Association between colorectal cancer, the frequency of Bacteroides fragilis, and the level of mismatch repair genes expression in the biopsy samples of Iranian patients. BMC Gastroenterol. 2024;24:82. doi: 10.1186/s12876-024-03169-z. PubMed DOI PMC

Wu L., Park S.-H., Kim H. Direct and indirect evidence of effects of Bacteroides spp. on obesity and inflammation. Int. J. Mol. Sci. 2024;25:438. doi: 10.3390/ijms25010438. PubMed DOI PMC

Zhai Q., Feng S., Arjan N., Chen W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019;59:3227–3236. doi: 10.1080/10408398.2018.1517725. PubMed DOI

Jian H., Liu Y., Wang X., Dong X., Zou X. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut-liver-brain axes? Int. J. Mol. Sci. 2023;24:3900. doi: 10.3390/ijms24043900. PubMed DOI PMC

Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC

Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI

Yarlagadda K., Zachwieja A.J., de Flamingh A., Phungviwatnikul T., Rivera-Colón A.G., Roseman C., Shackelford L., Swanson K.S., Malhi R.S. Geographically diverse canid sampling provides novel insights into pre-industrial microbiomes. Proc. R. Soc. B Biol. Sci. 2022;289 doi: 10.1098/rspb.2022.0052. PubMed DOI PMC

Pujo J., Petitfils C., Le Faouder P., Eeckhaut V., Payros G., Maurel S., Perez-Berezo T., Van Hul M., Barreau F., Blanpied C., Chavanas S., Van Immerseel F., Bertrand-Michel J., Oswald E., Knauf C., Dietrich G., Cani P.D., Cenac N. Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut. 2021;70:1088–1097. doi: 10.1136/gutjnl-2020-321173. PubMed DOI

Deng L., Wojciech L., Gascoigne N.R.J., Peng G., Tan K.S.W. New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLoS Pathog. 2021;17 doi: 10.1371/journal.ppat.1009253. PubMed DOI PMC

Billy V., Lhotská Z., Jirků M., Kadlecová O., Frgelecová L., Parfrey L.W., Jirků-Pomajbíková K. Blastocystis colonization alters the gut microbiome and, in some cases, promotes faster recovery from induced colitis. Front. Microbiol. 2021;7 PubMed PMC

Andersen L.O.B., Bonde I., Nielsen H.B.H.B., Stensvold C.R. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol. Ecol. 2015;91 doi: 10.1093/femsec/fiv072. PubMed DOI

Tito R.Y., Chaffron S., Caenepeel C., Lima-Mendez G., Wang J., Vieira-Silva S., Falony G., Hildebrand F., Darzi Y., Rymenans L., Verspecht C., Bork P., Vermeire S., Joossens M., Raes J. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68:1180–1189. doi: 10.1136/gutjnl-2018-316106. PubMed DOI PMC

Huang L.S., Yeh Y.M., Chiu S.F., Huang P.J., Chu L.J., Huang C.Y., Cheng F.W., Chen L.C., Lin H.C., Shih Y.W., Lin W.N., Huang K.Y. Intestinal microbiota analysis of different Blastocystis subtypes and Blastocystis-negative individuals in Taiwan. Biom. J. 2024;47 doi: 10.1016/j.bj.2023.100661. PubMed DOI PMC

You C., Jirků M., Corcoran D.L., Parker W., Jirků-Pomajbíková K. Altered gut ecosystems plus the microbiota’s potential for rapid evolution: a recipe for inevitable change with unknown consequences. Computat. Struct. Biotechnol. J. 2021;19:5969–5977. doi: 10.1016/j.csbj.2021.10.033. PubMed DOI PMC

Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., Sinha R., Gilroy E., Gupta K., Baldassano R., Nessel L., Li H., Bushman F.D., Lewis J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 2011;334:105–108. doi: 10.1126/science.1208344. PubMed DOI PMC

Prasoodanan V., P. K, Sharma A.K., Mahajan S., Dhakan D.B., Maji A., Scaria J., Sharma V.K. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth–gut axis. Npj Biofilms Microbiomes. 2021;7:1–17. doi: 10.1038/s41522-021-00248-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace