Lightella neohaematopini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus

. 2022 ; 13 () : 900312. [epub] 20220801

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35979496

Sucking lice (Anoplura) are known to have established symbiotic associations multiple times with different groups of bacteria as diverse as Enterobacteriales, Legionellales, and Neisseriales. This diversity, together with absence of a common coevolving symbiont (such as Buchnera, in aphids), indicates that sucking lice underwent a series of symbiont acquisitions, losses, and replacements. To better understand evolution and significance of louse symbionts, genomic and phylogenetic data are needed from a broader taxonomic diversity of lice and their symbiotic bacteria. In this study, we extend the known spectrum of the louse symbionts with a new lineage associated with Neohaematopinus pacificus, a louse species that commonly parasitizes North American chipmunks. The recent coevolutionary analysis showed that rather than a single species, these lice form a cluster of unique phylogenetic lineages specific to separate chipmunk species (or group of closely related species). Using metagenomic assemblies, we show that the lice harbor a bacterium which mirrors their phylogeny and displays traits typical for obligate mutualists. Phylogenetic analyses place this bacterium within Enterobacteriaceae on a long branch related to another louse symbiont, "Candidatus Puchtella pedicinophila." We propose for this symbiotic lineage the name "Candidatus Lightella neohaematopini." Based on the reconstruction of metabolic pathways, we suggest that like other louse symbionts, L. neohaematopini provides its host with at least some B vitamins. In addition, several samples harbored another symbiotic bacterium phylogenetically affiliated with the Neisseriales-related symbionts described previously from the lice Polyplax serrata and Hoplopleura acanthopus. Characterizing these bacteria further extend the known diversity of the symbiotic associations in lice and show unique complexity and dynamics of the system.

Zobrazit více v PubMed

Allen J. M., Burleigh J. G., Light J. E., Reed D. L. (2016). Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ 4:e2187. 10.7717/peerj.2187 PubMed DOI PMC

Alneberg J., Bjarnason B., de Bruijn I., Schirmer M., Quick J., Ijaz U., et al. (2014). Binning metagenomic contigs by coverage and composition. Nat. Methods 11 1144–1146. 10.1038/nmeth.3103 PubMed DOI

Arkin A. P., Cottingham R. W., Henry C. S., Harris N. L., Stevens R. L., Maslov S., et al. (2018). KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36 566–569. 10.1038/nbt.4163 PubMed DOI PMC

Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., et al. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9:75. 10.1186/1471-2164-9-75 PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Bell K., Allen J., Johnson K., Demboski J., Cook J. (2021). Disentangling lousy relationships: comparative phylogenomics of two sucking louse lineages parasitizing chipmunks. Mol. Phylogenet. Evol. 155:106998. 10.1016/j.ympev.2020.106998 PubMed DOI

Bell K. C., Matek D., Demboski J. R., Cook J. A. (2015). Expanded host range of sucking lice and pinworms of western North American chipmunks. Comp. Parasitol. 82 312–321. 10.1654/4756.1 PubMed DOI

Boyd B., Allen J., Koga R., Fukatsu T., Sweet A., Johnson K., et al. (2016). Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82 3185–3197. 10.1128/AEM.00282-16 PubMed DOI PMC

Boyd B. M., Allen J. M., de Crécy-Lagard V., Reed D. L. (2014). Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee lice. G3 4 2189–2195. 10.1534/g3.114.012567 PubMed DOI PMC

Boyd B. M., Allen J. M., Nguyen N. P., Vachaspati P., Quicksall Z., Warnow T., et al. (2017). Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol. Biol. Evol. 34 1743–1757. 10.1093/molbev/msx117 PubMed DOI PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST plus: architecture and applications. BMC Bioinform. 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Castresana J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17 540–552. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Charles H., Heddi A., Rahbe Y. (2001). A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae, infered from phylogenetic analysis based on a heterogeneous model of DNA evolution. C. R. Acad. Sci. III 324 489–494. 10.1016/S0764-4469(01)01328-2 PubMed DOI

Chaumeil P., Mussig A., Hugenholtz P., Parks D. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36 1925–1927. 10.1093/bioinformatics/btz848 PubMed DOI PMC

Chen X. A., Li S., Aksoy S. (1999). Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglessworthia glossinidia. J. Mol. Evol. 48 49–58. 10.1007/pl00006444 PubMed DOI

Darling A. E., Mau B., Perna N. T. (2010). progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. 10.1371/journal.pone.0011147 PubMed DOI PMC

Darriba D., Taboada G., Doallo R., Posada D. (2012). jModelTest2: more models, new heuristics and parallel computing. Nat. Methods 9:772. 10.1038/nmeth.2109 PubMed DOI PMC

Dhami M. K., Buckley T. R., Beggs J. R., Taylor M. W. (2013). Primary symbiont of the ancient scale insect family Coelostomidiidae exhibits strict cophylogenetic patterns. Symbiosis 61 77–91. 10.1007/s13199-013-0257-8 DOI

Emms D., Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20:238. 10.1186/s13059-019-1832-y PubMed DOI PMC

Freitas T. A. K., Li P. E., Scholz M. B., Chain P. S. (2015). Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res. 43:e69. 10.1093/nar/gkv180 PubMed DOI PMC

Fukatsu T., Hosokawa T., Koga R., Nikoh N., Kato T., Hayama S., et al. (2009). Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Appl. Environ. Microbiol. 75 3796–3799. 10.1128/aem.00226-09 PubMed DOI PMC

Gilchrist C. L. M., Chooi Y. H. (2020). Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37 2473–2475. 10.1093/bioinformatics/btab007 PubMed DOI

Guindon S., Dufayard J., Hordijk W., Lefort V., Gascuel O. (2009). PhyML: fast and accurate phylogeny reconstruction by maximum likelihood. Infect. Genet. Evol. 9 384–385.

Guindon S., Dufayard J., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321. 10.1093/sysbio/syq010 PubMed DOI

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 518–522. 10.1093/molbev/msx281 PubMed DOI PMC

Hosokawa T., Koga R., Kikuchi Y., Meng X. Y., Fukatsu T. (2010). Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. U. S. A. 107 769–774. 10.1073/pnas.0911476107 PubMed DOI PMC

Husnik F., Chrudimsky T., Hypsa V. (2011). Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol. 9:87. 10.1186/1741-7007-9-87 PubMed DOI PMC

Hypsa V., Krizek J. (2007). Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb. Ecol. 54 242–251. 10.1007/s00248-006-9194-x PubMed DOI

Kalyaanamoorthy S., Minh B., Wong T., von Haeseler A., Jermiin L. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587-589. 10.1038/NMETH.4285 PubMed DOI PMC

Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44 457–462. 10.1093/nar/gkv1070 PubMed DOI PMC

Katoh K., Misawa K., Kuma K., Miyata T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC

Kirkness E. F., Haas B. J., Sun W., Braig H. R., Perotti M. A., Clark J. (2010). Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. 107 12168–12173. 10.1073/pnas.1003379107 PubMed DOI PMC

Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., et al. (2004). Versatile and open software for comparing large genomes. Genome Biol. 5:R12. 10.1186/gb-2004-5-2-r12 PubMed DOI PMC

Langmead B., Salzberg S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC

Lartillot N., Rodrigue N., Stubbs D., Richer J. (2013). PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62 611–615. 10.1093/sysbio/syt022 PubMed DOI

Lefort V., Longueville J., Gascuel O. (2017). SMS: smart model selection in PhyML. Mol. Biol. Evol. 34 2422–2424. 10.1093/molbev/msx149 PubMed DOI PMC

Leinonen R., Sugawara H., Shumway M. (2011). The sequence read archive. Nucleic Acids Res 39 D19–D21. 10.1093/nar/gkq1019 PubMed DOI PMC

Light J. E., Smith V. S., Allen J. M., Durden L. A., Reed D. L. (2010). Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura). BMC Evol. Biol. 10:292. 10.1186/1471-2148-10-292 PubMed DOI PMC

McCutcheon J. P., Boyd B. M., Dale C. (2019). The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29 485–495. 10.1016/j.cub.2019.03.032 PubMed DOI

McMurdie P. J., Holmes S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC

Minh B., Schmidt H., Chernomor O., Schrempf D., Woodhams M., von Haeseler A., et al. (2020). IQ-TREE2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:2461. 10.1093/molbev/msaa131 PubMed DOI PMC

Moran N., Munson M., Baumann P., Ishikawa H. (1993). A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. B Biol. Sci. 253 167–171. 10.1098/rspb.1993.0098 DOI

Moran N. A., Russell J. A., Koga R., Fukatsu T. (2005). Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71 3302–3310. 10.1128/AEM.71.6.3302-3310.2005 PubMed DOI PMC

Nogge G. (1981). Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous Arthropods. Parasitology 82 101–104.

Nováková E., Hypša V., Moran N. A. (2009). Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9:143. 10.1186/1471-2180-9-143 PubMed DOI PMC

Price D., Wilson A. (2014). A substrate ambiguous enzyme facilitates genome reduction in an intracellular symbiont. BMC Biol. 12:110. 10.1186/s12915-014-0110-4 PubMed DOI PMC

Puchta O. (1955). Experimentelle untersuchungen über die bedeutung der symbiose der kleiderlaus Pediculus vestimenti burm. Z. Parasitenkd. 17 1–40. PubMed

Rambaut A., Drummond A., Xie D., Baele G., Suchard M. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67 901–904. 10.1093/sysbio/syy032 PubMed DOI PMC

Rihova J., Batani G., Rodriguez-Ruano S., Martinu J., Vacha F., Novakova E., et al. (2021). A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol. Ecol. 30 2178–2196. 10.1111/mec.15866 PubMed DOI

Rihova J., Novakova E., Husnik F., Hypsa V. (2017). Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol. Evol. 9 2946–2957. 10.1093/gbe/evx217 PubMed DOI PMC

Ronquist F., Teslenko M., van der Mark P., Ayres D., Darling A., Hohna S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539-542. 10.1093/sysbio/sys029 PubMed DOI PMC

Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O., Moffatt M. F., et al. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12:87. 10.1186/s12915-014-0087-z PubMed DOI PMC

Sauer C., Stackebrandt E., Gadau J., Holldobler B., Gross R. (2000). Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int. J. Syst. Evol. Microbiol. 50 1877–1886. 10.1099/00207713-50-5-1877 PubMed DOI

Sayyari E., Mirarab S. (2016). Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33 1654–1668. 10.1093/molbev/msw079 PubMed DOI PMC

Seemann T. (2014). PROKKA: rapid prokaryotic genome annotation. Bioinformatics 30 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI

Simao F., Waterhouse R., Ioannidis P., Kriventseva E., Zdobnov E. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI

Snyder A. K., Deberry J. W., Runyen-Janecky L., Rio R. V. M. (2010). Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc. R. Soc. B Biol. Sci. 277 2389–2397. 10.1098/rspb.2010.0364 PubMed DOI PMC

Spaulding A. W., von Dohlen C. D. (1998). Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol. Biol. Evol. 15 1506–1513. 10.1093/oxfordjournals.molbev.a025878 PubMed DOI

Stouthamer R., Breeuwer J. A., Hurst G. D. (1999). Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53 71–102. PubMed

Sudakaran S., Kost C., Kaltenpoth M. (2017). Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25 375–390. 10.1016/j.tim.2017.02.014 PubMed DOI

Syberg-Olsen M., Graber A. I., Keeling P., McCutcheon J., Husnik F. (2021). Pseudofinder: detection of pseudogenes in prokaryotic genomes. bioRxiv [Preprint]. 10.1101/2021.10.07.463580 PubMed DOI PMC

Toft C., Andersson S. G. (2010). Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11 465–475. 10.1038/nrg2798 PubMed DOI

Toh H., Weiss B. L., Perkin S. A., Yamashita A., Oshima K., Hattori M., et al. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16 149–156. 10.1101/gr.4106106 PubMed DOI PMC

Yoon S., Ha S., Lim J., Kwon S., Chun J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110 1281–1286. 10.1007/s10482-017-0844-4 PubMed DOI

Zchori-Fein E., Perlman S. J. (2004). Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 13 2009–2016. 10.1111/j.1365-294X.2004.02203.x PubMed DOI

Zhang C., Rabiee M., Sayyari E., Mirarab S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19:153. 10.1186/s12859-018-2129-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace