Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
29069349
PubMed Central
PMC5714129
DOI
10.1093/gbe/evx217
PII: 4562435
Knihovny.cz E-zdroje
- Klíčová slova
- genome evolution, horizontal gene transfer, symbiosis,
- MeSH
- Anoplura genetika mikrobiologie MeSH
- fyziologická adaptace MeSH
- genom bakteriální genetika MeSH
- koevoluce MeSH
- Legionella klasifikace genetika fyziologie MeSH
- molekulární evoluce * MeSH
- přenos genů horizontální MeSH
- sekvenční analýza DNA MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Legionellaceae are intracellular bacteria known as important human pathogens. In the environment, they are mainly found in biofilms associated with amoebas. In contrast to the gammaproteobacterial family Enterobacteriaceae, which established a broad spectrum of symbioses with many insect taxa, the only instance of legionella-like symbiont has been reported from lice of the genus Polyplax. Here, we sequenced the complete genome of this symbiont and compared its main characteristics to other Legionella species and insect symbionts. Based on rigorous multigene phylogenetic analyses, we confirm this bacterium as a member of the genus Legionella and propose the name Candidatus Legionella polyplacis, sp.n. We show that the genome of Ca. Legionella polyplacis underwent massive degeneration, including considerable size reduction (529.746 bp, 484 protein coding genes) and a severe decrease in GC content (23%). We identify several possible constraints underlying the evolution of this bacterium. On one hand, Ca. Legionella polyplacis and the louse symbionts Riesia and Puchtella experienced convergent evolution, perhaps due to adaptation to similar hosts. On the other hand, some metabolic differences are likely to reflect different phylogenetic positions of the symbionts and hence availability of particular metabolic function in the ancestor. This is exemplified by different arrangements of thiamine metabolism in Ca. Legionella polyplacis and Riesia. Finally, horizontal gene transfer is shown to play a significant role in the adaptive and diversification process. Particularly, we show that Ca. L. polyplacis horizontally acquired a complete biotin operon (bioADCHFB) that likely assisted this bacterium when becoming an obligate mutualist.
Biology Centre Institute of Parasitology CAS v v i České Budějovice Czech Republic
Department of Parasitology University of South Bohemia Ceské Budejovice Czech Republic
Department of Parasitology University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Alix B, Boubacar D, Vladimir M.. 2012. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40:W573–W579. PubMed PMC
Allen J, Burleigh J, Light J, Reed D.. 2016. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. Peerj 4:e2187.. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. PubMed
Aziz R, et al.2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75.. PubMed PMC
Bankevich A, et al.2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.http://dx.doi.org/10.1089/cmb.2012.0021 PubMed DOI PMC
Boyd B, et al.2016. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol. 82(11):3185–3197.http://dx.doi.org/10.1128/AEM.00282-16 PubMed DOI PMC
Boyd BM, Allen JM, de Crecy-Lagard V, Reed DL.. 2014. Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee Lice. G3 Genes Genomes Genet. 4(11):2189–2195. PubMed PMC
Boyd BM, et al.2017. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol. 34(7):1743–1757.http://dx.doi.org/10.1093/molbev/msx117 PubMed DOI PMC
Burstein D, et al.2016. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet. 48(2):167–175.http://dx.doi.org/10.1038/ng.3481 PubMed DOI PMC
Carattoli A, et al.2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 58(7):3895–3903.http://dx.doi.org/10.1128/AAC.02412-14 PubMed DOI PMC
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552.http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Coil D, Jospin G, Darling A.. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589.http://dx.doi.org/10.1093/bioinformatics/btu661 PubMed DOI
Dale C, Young SA, Haydon DT, Welburn SC.. 2001. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci U S A. 98(4):1883–1888.http://dx.doi.org/10.1073/pnas.98.4.1883 PubMed DOI PMC
Darriba D, Taboada G, Doallo R, Posada D.. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165.http://dx.doi.org/10.1093/bioinformatics/btr088 PubMed DOI PMC
Diederen B. 2008. Legionella spp. and Legionnaires’ disease. J Infect. 56(1):1–12. PubMed
Douglas A. 1989. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 64(4):409–434.http://dx.doi.org/10.1111/j.1469-185X.1989.tb00682.x PubMed DOI
Durden L, Musser G.. 1994. The sucking lice (Insecta, Anoplura) of the world – a taxonomic checklist with records of mammalian hosts and geographical distribution. Bull Am Museum Nat History 218:1–90.
Fields B. 1996. The molecular ecology of legionellae. Trends Microbiol. 4(7):286–290.http://dx.doi.org/10.1016/0966-842X(96)10041-X PubMed DOI
Fischer J, Holliday G, Thornton J.. 2010. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26(19):2496–2497.http://dx.doi.org/10.1093/bioinformatics/btq442 PubMed DOI PMC
Galperin MY, Makarova KS, Wolf YI, Koonin EV.. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43(D1):D261–D269. PubMed PMC
Gerth M, Bleidorn C.. 2017. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol. 2:16241. PubMed
Guindon S, et al.2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.http://dx.doi.org/10.1093/sysbio/syq010 PubMed DOI
Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T.. 2010. Wolbachia as a bacteriocyte associated nutritional mutualist. Proc Natl Acad Sci U S A. 107(2):769–774. PubMed PMC
Huelsenbeck J, Ronquist F.. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755.http://dx.doi.org/10.1093/bioinformatics/17.8.754 PubMed DOI
Husnik F, Chrudimsky T, Hypsa V.. 2011. Multiple origins of endosymbiosis within the Enterobacteriaceae (gamma-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol. 9:87. PubMed PMC
Husnik F, et al.2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578.http://dx.doi.org/10.1016/j.cell.2013.05.040 PubMed DOI
Hypsa V, Krizek J.. 2007. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb Ecol. 54(2):242–251.http://dx.doi.org/10.1007/s00248-006-9194-x PubMed DOI
Joseph S, et al.2016. Dynamics of genome change among Legionella species. Sci Rep. 6:33442. PubMed PMC
Katoh K, Misawa K, Kuma K, Miyata T.. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14):3059–3066.http://dx.doi.org/10.1093/nar/gkf436 PubMed DOI PMC
Katoh K, Standley D.. 2013. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.http://dx.doi.org/10.1093/molbev/mst010 PubMed DOI PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J.. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 62(4):611–615.http://dx.doi.org/10.1093/sysbio/syt022 PubMed DOI
Legendre P, Legendre LFJ.. 2012. Numerical ecology. Amsterdam: Elsevier. Third English edition. ISBN 978-0-444-53868-0.
Li H, Durbin R.. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.http://dx.doi.org/10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Genome Project Data Processing S, et al.2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079., PubMed PMC
Light J, Smith V, Allen J, Durden L, Reed D.. 2010. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura). BMC Evol Biol. 10:292.. PubMed PMC
Masui S, Sasaki T, Ishikawa H.. 2000. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol. 182(22):6529–6531. PubMed PMC
McCutcheon JP, Keeling PJ.. 2014. Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction. Curr Biol. 24(14):R654–R655. PubMed
Meeske A, et al.2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537(7622):634..http://dx.doi.org/10.1038/nature19331 PubMed DOI PMC
Moran N, McCutcheon J, Nakabachi A.. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 42:165–190.http://dx.doi.org/10.1146/annurev.genet.41.110306.130119 PubMed DOI
Moran NA. 1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 93(7):2873–2878. PubMed PMC
Moran NA, Bennett GM.. 2014. The tiniest tiny genomes. Annu Rev Microbiol. 68:195–215.http://dx.doi.org/10.1146/annurev-micro-091213-112901 PubMed DOI
Naito M, Pawlowska TE.. 2016. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mobile Genet Elem. 6(1):7791–7796. PubMed PMC
Nakabachi A, et al.2013. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 23(15):1478–1484.http://dx.doi.org/10.1016/j.cub.2013.06.027 PubMed DOI
Nikoh N, et al.2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A. 111(28):10257–10262. PubMed PMC
Nogge G. 1981. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous arthropods. Parasitology 82:101–104.
Ochman H, Moran NA.. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292(5519):1096–1099.http://dx.doi.org/10.1126/science.1058543 PubMed DOI
Penz T, et al.2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet. 8(10):e1003012.. PubMed PMC
Perez-Brocal V, et al.2006. A small microbial genome: the end of a long symbiotic relationship? Science 314(5797):312–313. PubMed
Rambaut A, Suchard MA, Xie D, Drummond AJ.. 2014. Tracer v1.6. Available from: http://beast.community/tracer, last accessed October 30, 2017.
Ries E. (co-authors). 1931. Die symbiose der läuse und federlinge. Z Morphol Ökologie Tiere 20(2–3):233–367.
Saier MH Jr, Tran CV, Barabote RD.. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34(Database issue):D181–D186. PubMed PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069.http://dx.doi.org/10.1093/bioinformatics/btu153 PubMed DOI
Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV.. 2010. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc R Soc. 277(1692):2389–2397. PubMed PMC
Stefka J, Hypsa V.. 2008. Host specificity and genealogy of the louse Polyplax serrata on field mice, Apodemus species: a case of parasite duplication or colonisation? Int J Parasitol. 38(6):731–741. PubMed
Tatusov R, Galperin M, Natale D, Koonin E.. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28(1):33–36.http://dx.doi.org/10.1093/nar/28.1.33 PubMed DOI PMC
ter Beek J, Guskov A, Slotboom D.. 2014. Structural diversity of ABC transporters. J Gen Physiol. 143(4):419–435. PubMed PMC
Volf P. 1991. Postembryonal development of mycetocytes and symbionts of the spiny rat louse Polyplax spinulosa. J Invert Pathol. 58(1):143–146.http://dx.doi.org/10.1016/0022-2011(91)90172-M DOI
Walker B, et al.2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9(11):e112963. PubMed PMC
Wilkes TE, et al.2010. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol Biol. 19(s1):59–73.http://dx.doi.org/10.1111/j.1365-2583.2009.00963.x PubMed DOI
Woolfit M, Bromham L.. 2003. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol. 20(9):1545–1555.http://dx.doi.org/10.1093/molbev/msg167 PubMed DOI
Wu M, Scott A.. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28(7):1033–1034.http://dx.doi.org/10.1093/bioinformatics/bts079 PubMed DOI
Fur microbiome as a putative source of symbiotic bacteria in sucking lice
Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts
Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite