Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata

. 2017 Nov 01 ; 9 (11) : 2946-2957.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29069349

Legionellaceae are intracellular bacteria known as important human pathogens. In the environment, they are mainly found in biofilms associated with amoebas. In contrast to the gammaproteobacterial family Enterobacteriaceae, which established a broad spectrum of symbioses with many insect taxa, the only instance of legionella-like symbiont has been reported from lice of the genus Polyplax. Here, we sequenced the complete genome of this symbiont and compared its main characteristics to other Legionella species and insect symbionts. Based on rigorous multigene phylogenetic analyses, we confirm this bacterium as a member of the genus Legionella and propose the name Candidatus Legionella polyplacis, sp.n. We show that the genome of Ca. Legionella polyplacis underwent massive degeneration, including considerable size reduction (529.746 bp, 484 protein coding genes) and a severe decrease in GC content (23%). We identify several possible constraints underlying the evolution of this bacterium. On one hand, Ca. Legionella polyplacis and the louse symbionts Riesia and Puchtella experienced convergent evolution, perhaps due to adaptation to similar hosts. On the other hand, some metabolic differences are likely to reflect different phylogenetic positions of the symbionts and hence availability of particular metabolic function in the ancestor. This is exemplified by different arrangements of thiamine metabolism in Ca. Legionella polyplacis and Riesia. Finally, horizontal gene transfer is shown to play a significant role in the adaptive and diversification process. Particularly, we show that Ca. L. polyplacis horizontally acquired a complete biotin operon (bioADCHFB) that likely assisted this bacterium when becoming an obligate mutualist.

Zobrazit více v PubMed

Alix B, Boubacar D, Vladimir M.. 2012. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40:W573–W579. PubMed PMC

Allen J, Burleigh J, Light J, Reed D.. 2016. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. Peerj 4:e2187.. PubMed PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. PubMed

Aziz R, et al.2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75.. PubMed PMC

Bankevich A, et al.2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.http://dx.doi.org/10.1089/cmb.2012.0021 PubMed DOI PMC

Boyd B, et al.2016. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol. 82(11):3185–3197.http://dx.doi.org/10.1128/AEM.00282-16 PubMed DOI PMC

Boyd BM, Allen JM, de Crecy-Lagard V, Reed DL.. 2014. Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee Lice. G3 Genes Genomes Genet. 4(11):2189–2195. PubMed PMC

Boyd BM, et al.2017. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol. 34(7):1743–1757.http://dx.doi.org/10.1093/molbev/msx117 PubMed DOI PMC

Burstein D, et al.2016. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet. 48(2):167–175.http://dx.doi.org/10.1038/ng.3481 PubMed DOI PMC

Carattoli A, et al.2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 58(7):3895–3903.http://dx.doi.org/10.1128/AAC.02412-14 PubMed DOI PMC

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552.http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Coil D, Jospin G, Darling A.. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589.http://dx.doi.org/10.1093/bioinformatics/btu661 PubMed DOI

Dale C, Young SA, Haydon DT, Welburn SC.. 2001. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci U S A. 98(4):1883–1888.http://dx.doi.org/10.1073/pnas.98.4.1883 PubMed DOI PMC

Darriba D, Taboada G, Doallo R, Posada D.. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165.http://dx.doi.org/10.1093/bioinformatics/btr088 PubMed DOI PMC

Diederen B. 2008. Legionella spp. and Legionnaires’ disease. J Infect. 56(1):1–12. PubMed

Douglas A. 1989. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 64(4):409–434.http://dx.doi.org/10.1111/j.1469-185X.1989.tb00682.x PubMed DOI

Durden L, Musser G.. 1994. The sucking lice (Insecta, Anoplura) of the world – a taxonomic checklist with records of mammalian hosts and geographical distribution. Bull Am Museum Nat History 218:1–90.

Fields B. 1996. The molecular ecology of legionellae. Trends Microbiol. 4(7):286–290.http://dx.doi.org/10.1016/0966-842X(96)10041-X PubMed DOI

Fischer J, Holliday G, Thornton J.. 2010. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26(19):2496–2497.http://dx.doi.org/10.1093/bioinformatics/btq442 PubMed DOI PMC

Galperin MY, Makarova KS, Wolf YI, Koonin EV.. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43(D1):D261–D269. PubMed PMC

Gerth M, Bleidorn C.. 2017. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol. 2:16241. PubMed

Guindon S, et al.2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.http://dx.doi.org/10.1093/sysbio/syq010 PubMed DOI

Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T.. 2010. Wolbachia as a bacteriocyte associated nutritional mutualist. Proc Natl Acad Sci U S A. 107(2):769–774. PubMed PMC

Huelsenbeck J, Ronquist F.. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755.http://dx.doi.org/10.1093/bioinformatics/17.8.754 PubMed DOI

Husnik F, Chrudimsky T, Hypsa V.. 2011. Multiple origins of endosymbiosis within the Enterobacteriaceae (gamma-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol. 9:87. PubMed PMC

Husnik F, et al.2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578.http://dx.doi.org/10.1016/j.cell.2013.05.040 PubMed DOI

Hypsa V, Krizek J.. 2007. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb Ecol. 54(2):242–251.http://dx.doi.org/10.1007/s00248-006-9194-x PubMed DOI

Joseph S, et al.2016. Dynamics of genome change among Legionella species. Sci Rep. 6:33442. PubMed PMC

Katoh K, Misawa K, Kuma K, Miyata T.. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14):3059–3066.http://dx.doi.org/10.1093/nar/gkf436 PubMed DOI PMC

Katoh K, Standley D.. 2013. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.http://dx.doi.org/10.1093/molbev/mst010 PubMed DOI PMC

Lartillot N, Rodrigue N, Stubbs D, Richer J.. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 62(4):611–615.http://dx.doi.org/10.1093/sysbio/syt022 PubMed DOI

Legendre P, Legendre LFJ.. 2012. Numerical ecology. Amsterdam: Elsevier. Third English edition. ISBN 978-0-444-53868-0.

Li H, Durbin R.. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.http://dx.doi.org/10.1093/bioinformatics/btp324 PubMed DOI PMC

Li H, Genome Project Data Processing S, et al.2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079., PubMed PMC

Light J, Smith V, Allen J, Durden L, Reed D.. 2010. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura). BMC Evol Biol. 10:292.. PubMed PMC

Masui S, Sasaki T, Ishikawa H.. 2000. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol. 182(22):6529–6531. PubMed PMC

McCutcheon JP, Keeling PJ.. 2014. Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction. Curr Biol. 24(14):R654–R655. PubMed

Meeske A, et al.2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537(7622):634..http://dx.doi.org/10.1038/nature19331 PubMed DOI PMC

Moran N, McCutcheon J, Nakabachi A.. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 42:165–190.http://dx.doi.org/10.1146/annurev.genet.41.110306.130119 PubMed DOI

Moran NA. 1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 93(7):2873–2878. PubMed PMC

Moran NA, Bennett GM.. 2014. The tiniest tiny genomes. Annu Rev Microbiol. 68:195–215.http://dx.doi.org/10.1146/annurev-micro-091213-112901 PubMed DOI

Naito M, Pawlowska TE.. 2016. The role of mobile genetic elements in evolutionary longevity of heritable endobacteria. Mobile Genet Elem. 6(1):7791–7796. PubMed PMC

Nakabachi A, et al.2013. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 23(15):1478–1484.http://dx.doi.org/10.1016/j.cub.2013.06.027 PubMed DOI

Nikoh N, et al.2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A. 111(28):10257–10262. PubMed PMC

Nogge G. 1981. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous arthropods. Parasitology 82:101–104.

Ochman H, Moran NA.. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292(5519):1096–1099.http://dx.doi.org/10.1126/science.1058543 PubMed DOI

Penz T, et al.2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet. 8(10):e1003012.. PubMed PMC

Perez-Brocal V, et al.2006. A small microbial genome: the end of a long symbiotic relationship? Science 314(5797):312–313. PubMed

Rambaut A, Suchard MA, Xie D, Drummond AJ.. 2014. Tracer v1.6. Available from: http://beast.community/tracer, last accessed October 30, 2017.

Ries E. (co-authors). 1931. Die symbiose der läuse und federlinge. Z Morphol Ökologie Tiere 20(2–3):233–367.

Saier MH Jr, Tran CV, Barabote RD.. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34(Database issue):D181–D186. PubMed PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069.http://dx.doi.org/10.1093/bioinformatics/btu153 PubMed DOI

Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV.. 2010. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc R Soc. 277(1692):2389–2397. PubMed PMC

Stefka J, Hypsa V.. 2008. Host specificity and genealogy of the louse Polyplax serrata on field mice, Apodemus species: a case of parasite duplication or colonisation? Int J Parasitol. 38(6):731–741. PubMed

Tatusov R, Galperin M, Natale D, Koonin E.. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28(1):33–36.http://dx.doi.org/10.1093/nar/28.1.33 PubMed DOI PMC

ter Beek J, Guskov A, Slotboom D.. 2014. Structural diversity of ABC transporters. J Gen Physiol. 143(4):419–435. PubMed PMC

Volf P. 1991. Postembryonal development of mycetocytes and symbionts of the spiny rat louse Polyplax spinulosa. J Invert Pathol. 58(1):143–146.http://dx.doi.org/10.1016/0022-2011(91)90172-M DOI

Walker B, et al.2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9(11):e112963. PubMed PMC

Wilkes TE, et al.2010. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol Biol. 19(s1):59–73.http://dx.doi.org/10.1111/j.1365-2583.2009.00963.x PubMed DOI

Woolfit M, Bromham L.. 2003. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol. 20(9):1545–1555.http://dx.doi.org/10.1093/molbev/msg167 PubMed DOI

Wu M, Scott A.. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28(7):1033–1034.http://dx.doi.org/10.1093/bioinformatics/bts079 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fur microbiome as a putative source of symbiotic bacteria in sucking lice

. 2024 Sep 27 ; 14 (1) : 22326. [epub] 20240927

Highly Resolved Genomes of Two Closely Related Lineages of the Rodent Louse Polyplax serrata with Different Host Specificities

. 2024 Mar 02 ; 16 (3) : .

Arsenophonus symbiosis with louse flies: multiple origins, coevolutionary dynamics, and metabolic significance

. 2023 Oct 26 ; 8 (5) : e0070623. [epub] 20230926

Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment

. 2023 Aug 17 ; 11 (4) : e0168123. [epub] 20230608

Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts

. 2023 Feb 07 ; 11 (1) : 22. [epub] 20230207

Lightella neohaematopini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus

. 2022 ; 13 () : 900312. [epub] 20220801

Development and validation of an LC-MS/MS method for determination of B vitamins and some its derivatives in whole blood

. 2022 ; 17 (7) : e0271444. [epub] 20220714

A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum

. 2021 Dec 24 ; 10 () : . [epub] 20211224

Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite

. 2020 Apr 01 ; 12 (4) : 429-442.

Host specificity driving genetic structure and diversity in ectoparasite populations: Coevolutionary patterns in Apodemus mice and their lice

. 2018 Oct ; 8 (20) : 10008-10022. [epub] 20181003

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace