Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment

. 2023 Aug 17 ; 11 (4) : e0168123. [epub] 20230608

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37289079

The importance of gut microbiomes has become generally recognized in vector biology. This study addresses microbiome signatures in North American Triatoma species of public health significance (vectors of Trypanosoma cruzi) linked to their blood-feeding strategy and the natural habitat. To place the Triatoma-associated microbiomes within a complex evolutionary and ecological context, we sampled sympatric Triatoma populations, related predatory reduviids, unrelated ticks, and environmental material from vertebrate nests where these arthropods reside. Along with five Triatoma species, we have characterized microbiomes of five reduviids (Stenolemoides arizonensis, Ploiaria hirticornis, Zelus longipes, and two Reduvius species), a single soft tick species, Ornithodoros turicata, and environmental microbiomes from selected sites in Arizona, Texas, Florida, and Georgia. The microbiomes of predatory reduviids lack a shared core microbiota. As in triatomines, microbiome dissimilarities among species correlate with dominance of a single bacterial taxon. These include Rickettsia, Lactobacillus, "Candidatus Midichloria," and Zymobacter, which are often accompanied by known symbiotic genera, i.e., Wolbachia, "Candidatus Lariskella," Asaia, Gilliamella, and Burkholderia. We have further identified a compositional convergence of the analyzed microbiomes in regard to the host phylogenetic distance in both blood-feeding and predatory reduviids. While the microbiomes of the two reduviid species from the Emesinae family reflect their close relationship, the microbiomes of all Triatoma species repeatedly form a distinct monophyletic cluster highlighting their phylosymbiosis. Furthermore, based on environmental microbiome profiles and blood meal analysis, we propose three epidemiologically relevant and mutually interrelated bacterial sources for Triatoma microbiomes, i.e., host abiotic environment, host skin microbiome, and pathogens circulating in host blood. IMPORTANCE This study places microbiomes of blood-feeding North American Triatoma vectors (Reduviidae) into a broader evolutionary and ecological context provided by related predatory assassin bugs (Reduviidae), another unrelated vector species (soft tick Ornithodoros turicata), and the environment these arthropods coinhabit. For both vectors, microbiome analyses suggest three interrelated sources of bacteria, i.e., the microbiome of vertebrate nests as their natural habitat, the vertebrate skin microbiome, and the pathobiome circulating in vertebrate blood. Despite an apparent influx of environment-associated bacteria into the arthropod microbiomes, Triatoma microbiomes retain their specificity, forming a distinct cluster that significantly differs from both predatory relatives and ecologically comparable ticks. Similarly, within the related predatory Reduviidae, we found the host phylogenetic distance to underlie microbiome similarities.

Zobrazit více v PubMed

Sudakaran S, Kost C, Kaltenpoth M. 2017. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25:375–390. doi:10.1016/j.tim.2017.02.014. PubMed DOI

Brucker RM, Bordenstein SR. 2012. Speciation by symbiosis. Trends Ecol Evol 27:443–451. doi:10.1016/j.tree.2012.03.011. PubMed DOI

Koga R, Bennett GM, Cryan JR, Moran NA. 2013. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15:2073–2081. doi:10.1111/1462-2920.12121. PubMed DOI

Hypsa V, Krizek J. 2007. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (phthiraptera, anoplura). Microb Ecol 54:242–251. doi:10.1007/s00248-006-9194-x. PubMed DOI

Perotti MA, Kirkness EF, Reed DL, Braig HR. 2008. Endosymbionts of lice, p 205–220. In Bourtzis K, Miller TA (ed), Insect symbiosis, 1st ed, vol 3. CRC Press, Boca Raton, FL.

Boyd BM, Allen JM, Koga R, Fukatsu T, Sweet AD, Johnson KP, Reed DL. 2016. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol 82:3185–3197. doi:10.1128/AEM.00282-16. PubMed DOI PMC

Manzano-Marin A, Oceguera-Figueroa A, Latorre A, Jimenez-Garcia LF, Moya A. 2015. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol 7:2871–2884. doi:10.1093/gbe/evv188. PubMed DOI PMC

Song SJ, Sanders JG, Baldassarre DT, Chaves JA, Johnson NS, Piaggio AJ, Stuckey MJ, Novakova E, Metcalf JL, Chomel BB, Aguilar-Setien A, Knight R, McKenzie VJ. 2019. Is there convergence of gut microbes in blood-feeding vertebrates? Philos Trans R Soc Lond B Biol Sci 374:20180249. doi:10.1098/rstb.2018.0249. PubMed DOI PMC

Hwang WS, Weirauch C. 2012. Evolutionary history of assassin bugs (insecta: hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS One 7:e45523. doi:10.1371/journal.pone.0045523. PubMed DOI PMC

Bilheiro AB, Costa GDS, Araujo MDS, Ribeiro WAR, Medeiros JF, Camargo LMA. 2022. Identification of blood meal sources in species of genus Rhodnius in four different environments in the Brazilian amazon. Acta Trop 232:106486. doi:10.1016/j.actatropica.2022.106486. PubMed DOI

Brown JJ, Rodriguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Jr, Hypsa V, Novakova E. 2020. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome 8:146. doi:10.1186/s40168-020-00921-x. PubMed DOI PMC

Filée J, Agésilas-Lequeux K, Lacquehay L, Bérenger JM, Dupont L, Mendonça V, da Rosa JA, Harry M. 2023. Wolbachia genomics reveals a potential for a nutrition-based symbiosis in blood-sucking Triatomine bugs. bioRxiv. doi:10.1101/2022.09.06.506778. DOI

Wigglesworth VB. 1936. Symbiotic bacteria in a blood-sucking insect, Rhodnius Prolixus Stål. (Hemiptera, Triatomidae). Parasitology 28:284–289. doi:10.1017/S0031182000022459. DOI

Gilliland CA, Patel V, McCormick AC, Mackett BM, Vogel KJ. 2023. Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol Ecol 32:920–935. doi:10.1111/mec.16800. PubMed DOI PMC

Wyatt GR. 1961. The biochemistry of insect hemolymph. Annu Rev Entomol 6:75–102. doi:10.1146/annurev.en.06.010161.000451. DOI

Graca-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, Sorgine MH, Oliveira MF, Oliveira PL. 2006. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol 36:322–335. doi:10.1016/j.ibmb.2006.01.009. PubMed DOI

Henry LM, Maiden MC, Ferrari J, Godfray HC. 2015. Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525. doi:10.1111/ele.12425. PubMed DOI

Vivero RJ, Jaramillo NG, Cadavid-Restrepo G, Soto SI, Herrera CX. 2016. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasit Vectors 9:496. doi:10.1186/s13071-016-1766-0. PubMed DOI PMC

Malhotra J, Dua A, Saxena A, Sangwan N, Mukherjee U, Pandey N, Rajagopal R, Khurana P, Khurana JP, Lal R. 2012. Genome sequence of Acinetobacter sp. strain HA, isolated from the gut of the polyphagous insect pest Helicoverpa armigera. J Bacteriol 194:5156. doi:10.1128/JB.01194-12. PubMed DOI PMC

Chalfant RB, N’Guessan KF. 1990. Dose response of the cowpea curculio (Coleoptera: Curculionidae) from different regions of Georgia to some currently used pyrethroid insecticides. J Entomol Sci 25:219–222. doi:10.18474/0749-8004-25.2.219. DOI

Pietrantonio PV, Junek TA, Parker R, Mott D, Siders K, Troxclair N, Vargas-Camplis J, Westbrook JK, Vassiliou VA. 2007. Detection and evolution of resistance to the pyrethroid cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) populations in Texas. Environ Entomol 36:1174–1188.2.0.CO;2]. doi:10.1603/0046-225X(2007)36[1174:DAEORT]2.0.CO;2. PubMed DOI

Dennehy TJ, DeGain BA, Harpold VS, Brink SA. 2004. Vegetable report 2004. College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ.

da Mota FF, Castro DP, Vieira CS, Gumiel M, de Albuquerque JP, Carels N, Azambuja P. 2018. In vitro trypanocidal activity, genomic analysis of isolates, and in vivo transcription of type VI secretion system of Serratia marcescens belonging to the microbiota of Rhodnius prolixus digestive tract. Front Microbiol 9:3205. doi:10.3389/fmicb.2018.03205. PubMed DOI PMC

Azambuja P, Feder D, Garcia ES. 2004. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96. doi:10.1016/j.exppara.2004.04.007. PubMed DOI

Waltmann A, Willcox AC, Balasubramanian S, Borrini Mayori K, Mendoza Guerrero S, Salazar Sanchez RS, Roach J, Condori Pino C, Gilman RH, Bern C, Juliano JJ, Levy MZ, Meshnick SR, Bowman NM. 2019. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl Trop Dis 13:e0007383. doi:10.1371/journal.pntd.0007383. PubMed DOI PMC

Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, Hanley JP, Rodas AG, Richards B, Wallin KF, Helms Cahan S. 2018. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis 12:e0006730. doi:10.1371/journal.pntd.0006730. PubMed DOI PMC

Li G, Sun J, Meng Y, Yang C, Chen Z, Wu Y, Tian L, Song F, Cai W, Zhang X, Li H. 2022. The impact of environmental habitats and diets on the gut microbiota diversity of true bugs (Hemiptera: Heteroptera). Biology (Basel) 11:1039. doi:10.3390/biology11071039. PubMed DOI PMC

Novakova E, Hypsa V, Moran NA. 2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143. doi:10.1186/1471-2180-9-143. PubMed DOI PMC

Barraza-Guerrero SI, Meza-Herrera CA, Garcia-De la Pena C, Gonzalez-Alvarez VH, Vaca-Paniagua F, Diaz-Velasquez CE, Sanchez-Tortosa F, Avila-Rodriguez V, Valenzuela-Nunez LM, Herrera-Salazar JC. 2020. General microbiota of the soft tick Ornithodoros turicata parasitizing the Bolson tortoise (Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. Biology (Basel) 9:275. doi:10.3390/biology9090275. PubMed DOI PMC

Moustafa MAM, Mohamed WMA, Lau ACC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Matsuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. 2022. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 20:1979–1992. doi:10.1016/j.csbj.2022.04.020. PubMed DOI PMC

Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G. 2010. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 60:644–654. doi:10.1007/s00248-010-9704-8. PubMed DOI

Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D. 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 104:9047–9051. doi:10.1073/pnas.0610451104. PubMed DOI PMC

Cafiso A, Bazzocchi C, De Marco L, Opara MN, Sassera D, Plantard O. 2016. Molecular screening for Midichloria in hard and soft ticks reveals variable prevalence levels and bacterial loads in different tick species. Ticks Tick Borne Dis 7:1186–1192. doi:10.1016/j.ttbdis.2016.07.017. PubMed DOI

Bonnet SI, Binetruy F, Hernandez-Jarguin AM, Duron O. 2017. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol 7:236. doi:10.3389/fcimb.2017.00236. PubMed DOI PMC

Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M, Soares CA, da Silva-Neto ID, Berendonk TU, Petroni G. 2016. “Candidatus Fokinia solitaria,” a novel “stand-alone” symbiotic lineage of Midichloriaceae (Rickettsiales). PLoS One 11:e0145743. doi:10.1371/journal.pone.0145743. PubMed DOI PMC

Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, Sassera D. 2018. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol 10:1120–1126. doi:10.1093/gbe/evy072. PubMed DOI PMC

Kim HJ, Hamer GL, Hamer SA, Lopez JE, Teel PD. 2021. Identification of host bloodmeal source in Ornithodoros turicata Duges (Ixodida: Argasidae) using DNA-based and stable isotope-based techniques. Front Vet Sci 8:620441. doi:10.3389/fvets.2021.620441. PubMed DOI PMC

Francıs E. 1938. Longevity of the tick Ornithodoros turicata and of Spirochaeta recurrentis within this tick. Public Health Rep 53:2220. doi:10.2307/4582740. DOI

Leger E, Liu X, Masseglia S, Noel V, Vourc’h G, Bonnet S, McCoy KD. 2015. Reliability of molecular host-identification methods for ticks: an experimental in vitro study with Ixodes ricinus. Parasit Vectors 8:433. doi:10.1186/s13071-015-1043-7. PubMed DOI PMC

Balasubramanian S, Curtis-Robles R, Chirra B, Auckland LD, Mai A, Bocanegra-Garcia V, Clark P, Clark W, Cottingham M, Fleurie G, Johnson CD, Metz RP, Wang S, Hathaway NJ, Bailey JA, Hamer GL, Hamer SA. 2022. Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods. Sci Rep 12:10234. doi:10.1038/s41598-022-14208-8. PubMed DOI PMC

Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, Barnes JC, Dotson EM. 2013. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J Med Entomol 50:1126–1139. doi:10.1603/me12242. PubMed DOI PMC

Dumonteil E, Pronovost H, Bierman EF, Sanford A, Majeau A, Moore R, Herrera C. 2020. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol 29:3747–3761. doi:10.1111/mec.15582. PubMed DOI

Dumonteil E, Ramirez-Sierra MJ, Perez-Carrillo S, Teh-Poot C, Herrera C, Gourbiere S, Waleckx E. 2018. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep 8:4140. doi:10.1038/s41598-018-22455-x. PubMed DOI PMC

Gaithuma A, Yamagishi J, Hayashida K, Kawai N, Namangala B, Sugimoto C. 2020. Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 10:5005. doi:10.1038/s41598-020-61817-2. PubMed DOI PMC

Swei A, Kwan JY. 2017. Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11:813–816. doi:10.1038/ismej.2016.152. PubMed DOI PMC

Platas G, Morón R, González I, Collado J, Genilloud O, Peláez F, Diez MT. 1998. Production of antibacterial activities by members of the family Pseudonocardiaceae: influence of nutrients. World J Microbiol Biotechnol 14:521–527. doi:10.1023/A:1008874203344. DOI

Thoemmes MS, Cove MV. 2020. Bacterial communities in the natural and supplemental nests of an endangered ecosystem engineer. Ecosphere 11:e03239. doi:10.1002/ecs2.3239. DOI

Scholz CFP, Kilian M. 2016. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66:4422–4432. doi:10.1099/ijsem.0.001367. PubMed DOI

Perez-Heydrich C, Loughry WJ, Anderson CD, Oli MK. 2016. Patterns of Mycobacterium leprae infection in wild nine-banded armadillos (Dasypus novemcinctus) in Mississippi, USA. J Wildl Dis 52:524–532. doi:10.7589/2015-03-066. PubMed DOI

Madigan MT. 2012. Brock biology of microorganisms, 13th ed. Benjamin Cummings, San Francisco, CA.

Baek JH, Baek W, Ruan W, Jung HS, Lee SC, Jeon CO. 2022. Massilia soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 72(2). doi:10.1099/ijsem.0.005227. PubMed DOI

Hamid ME, Reitz T, Joseph MRP, Hommel K, Mahgoub A, Elhassan MM, Buscot F, Tarkka M. 2020. Diversity and geographic distribution of soil streptomycetes with antagonistic potential against actinomycetoma-causing Streptomyces sudanensis in Sudan and South Sudan. BMC Microbiol 20:33. doi:10.1186/s12866-020-1717-y. PubMed DOI PMC

Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA, NISC Comparative Sequencing Program . 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64. doi:10.1038/nature13786. PubMed DOI PMC

Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ. 2016. Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol 7:1753. doi:10.3389/fmicb.2016.01753. PubMed DOI PMC

Ross AA, Rodrigues Hoffmann A, Neufeld JD. 2019. The skin microbiome of vertebrates. Microbiome 7:79. doi:10.1186/s40168-019-0694-6. PubMed DOI PMC

Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF, Sicheritz-Pontén T, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH. 2014. The microbiome of New World vultures. Nat Commun 5:5498. doi:10.1038/ncomms6498. PubMed DOI

Brenner AE, Munoz-Leal S, Sachan M, Labruna MB, Raghavan R. 2021. Coxiella burnetii and related tick endosymbionts evolved from pathogenic ancestors. Genome Biol Evol 13:evab108. doi:10.1093/gbe/evab108. PubMed DOI PMC

Říhová J, Nováková E, Husník F, Hypša V. 2017. Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol Evol 9:2946–2957. doi:10.1093/gbe/evx217. PubMed DOI PMC

Říhová J, Batani G, Rodríguez-Ruano SM, Martinů J, Vácha F, Nováková E, Hypša V. 2021. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol Ecol 30:2178–2196. doi:10.1111/mec.15866. PubMed DOI

Cooley R. 1944. The argasidae of North America, Central America and Cuba. University Press, Notre Dame, IN.

Monteiro FA, Barrett TV, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D, Beard CB. 2003. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 12:997–1006. doi:10.1046/j.1365-294x.2003.01802.x. PubMed DOI

Weirauch C, Munro JB. 2009. Molecular phylogeny of the assassin bugs (Hemiptera: Reduviidae), based on mitochondrial and nuclear ribosomal genes. Mol Phylogenet Evol 53:287–299. doi:10.1016/j.ympev.2009.05.039. PubMed DOI

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340. PubMed DOI PMC

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. doi:10.1093/molbev/msz189. PubMed DOI PMC

Posada D, Buckley TR. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808. doi:10.1080/10635150490522304. PubMed DOI

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446. PubMed DOI

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604. PubMed DOI

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2. PubMed DOI PMC

R Core Team. 2000. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 19 April 2022.

Riano HC, Jaramillo N, Dujardin JP. 2009. Growth changes in Rhodnius pallescens under simulated domestic and sylvatic conditions. Infect Genet Evol 9:162–168. doi:10.1016/j.meegid.2008.10.009. PubMed DOI

Espino CI, Gomez T, Gonzalez G, do Santos MF, Solano J, Sousa O, Moreno N, Windsor D, Ying A, Vilchez S, Osuna A. 2009. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol 75:547–550. doi:10.1128/AEM.01665-08. PubMed DOI PMC

Duron O, Binetruy F, Noel V, Cremaschi J, McCoy KD, Arnathau C, Plantard O, Goolsby J, Perez de Leon AA, Heylen DJA, Van Oosten AR, Gottlieb Y, Baneth G, Guglielmone AA, Estrada-Pena A, Opara MN, Zenner L, Vavre F, Chevillon C. 2017. Evolutionary changes in symbiont community structure in ticks. Mol Ecol 26:2905–2921. doi:10.1111/mec.14094. PubMed DOI

Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. doi:10.1111/1462-2920.13023. PubMed DOI

Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A, Landrum M, Lathrop S, Lu Z, Madden TL, O’Leary N, Phan L, Rangwala SH, Schneider VA, Skripchenko Y, Wang J, Ye J, Trawick BW, Pruitt KD, Sherry ST. 2021. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49:D10–D17. doi:10.1093/nar/gkaa892. PubMed DOI PMC

Ito K, Murphy D. 2013. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol 2:e79. doi:10.1038/psp.2013.56. PubMed DOI PMC

Wickham H, Henry L, Pedersen T, Luciani T, Decorde M, Lise V. 2022. svglite: a lightweight svg graphics device for R. https://github.com/lamdalili/SVGLite.

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER, Smith T, Stier A, Ter Braak CJF, Weedon J. 2019. vegan: community ecology package. https://cran.r-project.org/web/packages/vegan/index.html.

Liu C, Cui Y, Li X, Yao M. 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:fiaa255. doi:10.1093/femsec/fiaa255. PubMed DOI

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph 20:1983–1992. doi:10.1109/TVCG.2014.2346248. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace