Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution

. 2009 Jul 20 ; 9 () : 143. [epub] 20090720

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid19619300

BACKGROUND: The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus. RESULTS: The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability. CONCLUSION: The sample of currently available molecular data presents the genus Arsenophonus as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new Arsenophonus lineages as independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions encountered within the Arsenophonus clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.

Zobrazit více v PubMed

Huger AM, Skinner SW, Werren JH. Bacterial infections associated with the son-killer trait in the parasitoid wasp, Nasonia (= Mormoniella) vitripennis (Hymenoptera, Pteromalidae) J Invertebr Pathol. 1985;46:272–280. doi: 10.1016/0022-2011(85)90069-2. PubMed DOI

Skinner SW. Son-killer – A 3rd extrachromosomal factor affecting the sex-ratio in the parasitoid wasp, Nasonia (= Mormoniella) vitripennis. Nasonia. 1985;109:745–759. PubMed PMC

Werren JH, Skinner SW, Huger AM. Male-killing bacteria in a parasitic wasp. Science. 1986;231:990–992. doi: 10.1126/science.3945814. PubMed DOI

Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol. 1991;41:563–565.

Hypša V. Endocytobionts of Triatoma infestans : distribution and transmission. J Invertebr Pathol. 1993;61:32–38. doi: 10.1006/jipa.1993.1006. DOI

Louis C, Drif L, Vago C. Mise en évidence et étude ultrastructurale de procaryotes de type rickettsien dans les glandes salivaires des Triatomidae (Heteroptera) = Evidence and ultrastructural study of Rickettsia-like prokaryotes in salivary glands of Triatomidae (Heteroptera) Ann Soc Entomol Fr. 1986;22:153–162.

Hypša V, Dale C. In vitro culture and phylogenetic analysis of "Candidatus Arsenophonus triatominarum, " an intracellular bacterium from the triatomine bug, Triatoma infestans. Int J Syst Bacteriol. 1997;47:1140–1144. PubMed

Zreik L, Bove JM, Garnier M. Phylogenetic characterization of the bacterium-like organism associated with marginal chlorosis of strawberry and proposition of a Candidatus taxon for the organism, 'Candidatus Phlomobacter fragariae '. Int J Syst Bacteriol. 1998;48:257–261. PubMed

Spaulding AW, von Dohlen CD. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol Biol. 2001;10:57–67. doi: 10.1046/j.1365-2583.2001.00231.x. PubMed DOI

Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, Fukatsu T. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea) Zool Science. 2000;17:983–989. doi: 10.2108/zsj.17.983. DOI

Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. App Environ Microbiol. 2000;66:2898–2905. doi: 10.1128/AEM.66.7.2898-2905.2000. PubMed DOI PMC

Grindle N, Tyner JJ, Clay K, Fuqua C. Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. J Invertebr Pathol. 2003;83:264–266. doi: 10.1016/S0022-2011(03)00080-6. PubMed DOI

Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–1075. doi: 10.1046/j.1365-294X.2003.01780.x. PubMed DOI

Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Ann Entomol Soc Am. 2002;95:711–718. doi: 10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2. DOI

Thao MLL, Baumann P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae) Curr Microbiol. 2004;48:140–144. doi: 10.1007/s00284-003-4157-7. PubMed DOI

Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of "Candidatus Arsenophonus arthropodicus, " an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. App Environ Microbiol. 2006;72:2997–3004. doi: 10.1128/AEM.72.4.2997-3004.2006. PubMed DOI PMC

Dunn AK, Stabb EV. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae) App Environ Microbiol. 2005;71:8784–8794. doi: 10.1128/AEM.71.12.8784-8794.2005. PubMed DOI PMC

Allen JM, Reed DL, Perotti MA, Braig HR. Evolutionary relationships of "Candidatus Riesia spp.," endosymbiotic Enterobacteriaceae living within hematophagous primate lice. App Environ Microbiol. 2007;73:1659–1664. doi: 10.1128/AEM.01877-06. PubMed DOI PMC

Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. Fems Microbiol Ecol. 2007;59:600–610. doi: 10.1111/j.1574-6941.2006.00249.x. PubMed DOI

Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea) J Invertebr Pathol. 2006;91:64–68. doi: 10.1016/j.jip.2005.08.009. PubMed DOI

Hansen AK, Jeong G, Paine TD, Stouthamer R. Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. App Environ Microbiol. 2007;73:7531–7535. doi: 10.1128/AEM.01672-07. PubMed DOI PMC

Semetey O, Gatineau F, Bressan A, Boudon-Padieu E. Characterization of a gamma-3 proteobacteria responsible for the syndrome "basses richesses" of sugar beet transmitted by Pentastiridius sp. (Hemiptera, Cixiidae) Phytopathology. 2007;97:72–78. doi: 10.1094/PHYTO-97-0072. PubMed DOI

Šorfová P, Škeříková A, Hypša V. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Syst and App Microbiol. 2008;31:88–100. doi: 10.1016/j.syapm.2008.02.004. PubMed DOI

Perotti MA, Allen JM, Reed DL, Braig HR. Host-symbiont interactions of the primary endosymbiont of human head and body lice. Faseb Journal. 2007;21:1058–1066. doi: 10.1096/fj.06-6808com. PubMed DOI

Sasaki-Fukatsu K, Koga R, Nikoh N, Yoshizawa K, Kasai S, Mihara M, Kobayashi M, Tomita T, Fukatsu T. Symbiotic bacteria associated with stomach discs of human lice. App Environ Microbiol. 2006;72:7349–7352. doi: 10.1128/AEM.01429-06. PubMed DOI PMC

Fukatsu T, Koga R, Smith WA, Tanaka K, Nikoh N, Sasaki-Fukatsu K, Yoshizawa K, Dale C, Clayton DH. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl Environ Microbiol. 2007;73:6660–6668. doi: 10.1128/AEM.01131-07. PubMed DOI PMC

Herbeck JT, Degnan PH, Wernegreen JJ. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-proteobacteria) Mol Biol Evol. 2005;22:520–532. doi: 10.1093/molbev/msi036. PubMed DOI

Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–189. doi: 10.1146/annurev.micro.59.030804.121041. PubMed DOI

Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A. Endosymbiont phylogenesis in the Dryophthoridae weevils: Evidence for bacterial replacement. Mol Biol Evol. 2004;21:965–973. doi: 10.1093/molbev/msh063. PubMed DOI

Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P. Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae : A peculiar G+C content of an endocytobiotic DNA. J Mol Evol. 1998;47:52–61. doi: 10.1007/PL00006362. PubMed DOI

Galtier N, Gouy M. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 1998;15:871–879. PubMed

Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9:678–687. PubMed

Bergsten J. A review of long-branch attraction. Cladistics. 2005;21:163–193. doi: 10.1111/j.1096-0031.2005.00059.x. PubMed DOI

Hypša V, Křížek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura) Microb Ecology. 2007;54:242–251. doi: 10.1007/s00248-006-9194-x. PubMed DOI

Dittmar K, Porter ML, Murray S, Whiting MF. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins. Mol Phyl Evol. 2006;38:155–170. doi: 10.1016/j.ympev.2005.06.008. PubMed DOI

Sandstrom JP, Russell JA, White JP, Moran NA. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001;10:217–228. doi: 10.1046/j.1365-294X.2001.01189.x. PubMed DOI

Takiya DM, Tran PL, Dietrich CH, Moran NA. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol. 2006;15:4175–4191. doi: 10.1111/j.1365-294X.2006.03071.x. PubMed DOI

Thao ML, Gullan PJ, Baumann P. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. App Environ Microbiol. 2002;68:3190–3197. doi: 10.1128/AEM.68.7.3190-3197.2002. PubMed DOI PMC

Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. PubMed DOI

Heath BD, Butcher RDJ, Whitfield WGF, Hubbard SF. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol. 1999;9:313–316. doi: 10.1016/S0960-9822(99)80139-0. PubMed DOI

Russell JA, Moran NA. Horizontal transfer of bacterial symbionts: Heritability and fitness effects in a novel aphid host. App Environ Microbiol. 2005;71:7987–7994. doi: 10.1128/AEM.71.12.7987-7994.2005. PubMed DOI PMC

Mylvaganam S, Dennis PP. Sequence heterogeneity between the 2 genes encoding 16S ribosomal-RNA from the halophilic archeabacterium Haloarcula marismortui. Genetics. 1992;130:399–410. PubMed PMC

Wang Y, Zwang ZS, Ramanan N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol. 1997;179:3270–3276. PubMed PMC

Miller SR, Sunny A, Olson TL, Blankenship RE, Selker J, Wood M. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA. 2005;102:850–855. doi: 10.1073/pnas.0405667102. PubMed DOI PMC

Wang Y, Zhang ZS. Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology-Sgm. 2000;146:2845–2854. PubMed

Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002;19:2226–2238. PubMed

Lin CK, Hung CL, Chiang YC, Lin CM, Tsen HY. The sequence heterogenicities among 16S rRNA genes of Salmonella serovars and the effects on the specificity of the primers designed. Int J Food Microbiol. 2004;96:205–214. doi: 10.1016/j.ijfoodmicro.2004.03.027. PubMed DOI

Marchandin H, Teyssier C, de Buochberg MS, Jean-Pierre H, Carriere C, Jumas-Bilak E. Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology-Sgm. 2003;149:1493–1501. doi: 10.1099/mic.0.26132-0. PubMed DOI

Pettersson B, Bolske G, Thiaucourt F, Uhlen M, Johansson KE. Molecular evolution of Mycoplasma capricolum subsp. capripneumoniae strains, based on polymorphisms in the 16S rRNA genes. J Bacteriol. 1998;180:2350–2358. PubMed PMC

Yap WH, Zhang ZS, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 1999;181:5201–5209. PubMed PMC

Stewart FJ, Cavanaugh CM. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol. 2007;65:44–67. doi: 10.1007/s00239-006-0235-3. PubMed DOI

Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. App Environ Microbiol. 2004;70:3401–3406. doi: 10.1128/AEM.70.6.3401-3406.2004. PubMed DOI PMC

Dale C, Wang B, Moran N, Ochman H. Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol. 2003;20:1188–1194. doi: 10.1093/molbev/msg138. PubMed DOI

Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. Bmc Evol Biol. 2004;4:14. doi: 10.1186/1471-2148-4-44. PubMed DOI PMC

Ochman H, Wilson AC. Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86. doi: 10.1007/BF02111283. PubMed DOI

Rutschmann F. Bayesian molecular dating using PAML/multidivtime. A step-by-step manual. University of Zurich, Switzerland; 2005. http://www.plant.ch

Gaunt MW, Miles MA. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol. 2002;19:748–761. PubMed

Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol. 2000;15:321–326. doi: 10.1016/S0169-5347(00)01902-9. PubMed DOI

Dale C, Plague GR, Wang B, Ochman H, Moran NA. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci USA. 2002;99:12397–12402. doi: 10.1073/pnas.182213299. PubMed DOI PMC

Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol. 2004;53:95–110. doi: 10.1080/10635150490264842. PubMed DOI

Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. App Environ Microbiol. 2005;71:8802–8810. doi: 10.1128/AEM.71.12.8802-8810.2005. PubMed DOI PMC

Clark MA, Moran NA, Baumann P, Wernegreen JJ. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution. 2000;54:517–525. PubMed

Duron O, Gavotte L. Absence of Wolbachia in nonfilariid worms parasitizing arthropods. Curr Microbiol. 2007;55:193–197. doi: 10.1007/s00284-006-0578-4. PubMed DOI

Allen JM, Light JE, Perotti MA, Braig HR, Reed DL. Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet. PLoS One. 2009;4(3):e4969. doi: 10.1371/journal.pone.0004969. PubMed DOI PMC

Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6(1):27. doi: 10.1186/1741-7007-6-27. PubMed DOI PMC

Baldo L, Werren JH. Revisiting Wolbachia supergroup typing based on WSP: Spurious lineages and discordance with MLST. Curr Microbiol. 2007;55:81–87. doi: 10.1007/s00284-007-0055-8. PubMed DOI

Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology-Sgm. 2005;151:4015–4022. doi: 10.1099/mic.0.28313-0. PubMed DOI

Werren JH. In: Bergey's Manual of Systematic Bacteriology. Garrity GM, editor. Vol. 2. New York: Springer-Verlag; 2004. Arsenophonus.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acid Symp Series. 1999;41:95–98.

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. PubMed

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI

Goloboff PA, Farris JS, Nixon KC. TNT. Cladistics-the International Journal of the Willi Hennig Society. 2004;20:84–84.

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996;12:543–548. PubMed

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics. 2002;161:1307–1320. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Geographical variations, prevalence, and molecular dynamics of fastidious phloem-limited pathogens infecting sugar beet across Central Europe

. 2024 ; 19 (7) : e0306136. [epub] 20240702

Arsenophonus symbiosis with louse flies: multiple origins, coevolutionary dynamics, and metabolic significance

. 2023 Oct 26 ; 8 (5) : e0070623. [epub] 20230926

Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment

. 2023 Aug 17 ; 11 (4) : e0168123. [epub] 20230608

Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts

. 2022 Dec ; 24 (12) : 5788-5808. [epub] 20220909

Lightella neohaematopini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus

. 2022 ; 13 () : 900312. [epub] 20220801

Association between louse abundance and MHC II supertypes in Galápagos mockingbirds

. 2020 May ; 119 (5) : 1597-1605. [epub] 20200131

Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies

. 2017 ; 5 () : e4099. [epub] 20171211

Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae)

. 2016 ; 11 () : 72. [epub] 20160917

Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria

. 2016 Aug ; 72 (2) : 448-59. [epub] 20160429

Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies

. 2015 Sep ; 81 (18) : 6189-99. [epub] 20150706

Hard ticks and their bacterial endosymbionts (or would be pathogens)

. 2013 Sep ; 58 (5) : 419-28. [epub] 20130122

Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius

. 2012 ; 7 (7) : e40354. [epub] 20120717

Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches

. 2011 Dec 28 ; 9 () : 87. [epub] 20111228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...