Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
19619300
PubMed Central
PMC2724383
DOI
10.1186/1471-2180-9-143
PII: 1471-2180-9-143
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny MeSH
- Diptera mikrobiologie MeSH
- DNA bakterií genetika MeSH
- Enterobacteriaceae klasifikace genetika MeSH
- fylogeneze * MeSH
- molekulární evoluce * MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
BACKGROUND: The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus. RESULTS: The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability. CONCLUSION: The sample of currently available molecular data presents the genus Arsenophonus as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new Arsenophonus lineages as independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions encountered within the Arsenophonus clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.
Zobrazit více v PubMed
Huger AM, Skinner SW, Werren JH. Bacterial infections associated with the son-killer trait in the parasitoid wasp, Nasonia (= Mormoniella) vitripennis (Hymenoptera, Pteromalidae) J Invertebr Pathol. 1985;46:272–280. doi: 10.1016/0022-2011(85)90069-2. PubMed DOI
Skinner SW. Son-killer – A 3rd extrachromosomal factor affecting the sex-ratio in the parasitoid wasp, Nasonia (= Mormoniella) vitripennis. Nasonia. 1985;109:745–759. PubMed PMC
Werren JH, Skinner SW, Huger AM. Male-killing bacteria in a parasitic wasp. Science. 1986;231:990–992. doi: 10.1126/science.3945814. PubMed DOI
Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol. 1991;41:563–565.
Hypša V. Endocytobionts of Triatoma infestans : distribution and transmission. J Invertebr Pathol. 1993;61:32–38. doi: 10.1006/jipa.1993.1006. DOI
Louis C, Drif L, Vago C. Mise en évidence et étude ultrastructurale de procaryotes de type rickettsien dans les glandes salivaires des Triatomidae (Heteroptera) = Evidence and ultrastructural study of Rickettsia-like prokaryotes in salivary glands of Triatomidae (Heteroptera) Ann Soc Entomol Fr. 1986;22:153–162.
Hypša V, Dale C. In vitro culture and phylogenetic analysis of "Candidatus Arsenophonus triatominarum, " an intracellular bacterium from the triatomine bug, Triatoma infestans. Int J Syst Bacteriol. 1997;47:1140–1144. PubMed
Zreik L, Bove JM, Garnier M. Phylogenetic characterization of the bacterium-like organism associated with marginal chlorosis of strawberry and proposition of a Candidatus taxon for the organism, 'Candidatus Phlomobacter fragariae '. Int J Syst Bacteriol. 1998;48:257–261. PubMed
Spaulding AW, von Dohlen CD. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol Biol. 2001;10:57–67. doi: 10.1046/j.1365-2583.2001.00231.x. PubMed DOI
Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, Fukatsu T. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea) Zool Science. 2000;17:983–989. doi: 10.2108/zsj.17.983. DOI
Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. App Environ Microbiol. 2000;66:2898–2905. doi: 10.1128/AEM.66.7.2898-2905.2000. PubMed DOI PMC
Grindle N, Tyner JJ, Clay K, Fuqua C. Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. J Invertebr Pathol. 2003;83:264–266. doi: 10.1016/S0022-2011(03)00080-6. PubMed DOI
Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–1075. doi: 10.1046/j.1365-294X.2003.01780.x. PubMed DOI
Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Ann Entomol Soc Am. 2002;95:711–718. doi: 10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2. DOI
Thao MLL, Baumann P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae) Curr Microbiol. 2004;48:140–144. doi: 10.1007/s00284-003-4157-7. PubMed DOI
Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of "Candidatus Arsenophonus arthropodicus, " an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. App Environ Microbiol. 2006;72:2997–3004. doi: 10.1128/AEM.72.4.2997-3004.2006. PubMed DOI PMC
Dunn AK, Stabb EV. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae) App Environ Microbiol. 2005;71:8784–8794. doi: 10.1128/AEM.71.12.8784-8794.2005. PubMed DOI PMC
Allen JM, Reed DL, Perotti MA, Braig HR. Evolutionary relationships of "Candidatus Riesia spp.," endosymbiotic Enterobacteriaceae living within hematophagous primate lice. App Environ Microbiol. 2007;73:1659–1664. doi: 10.1128/AEM.01877-06. PubMed DOI PMC
Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. Fems Microbiol Ecol. 2007;59:600–610. doi: 10.1111/j.1574-6941.2006.00249.x. PubMed DOI
Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea) J Invertebr Pathol. 2006;91:64–68. doi: 10.1016/j.jip.2005.08.009. PubMed DOI
Hansen AK, Jeong G, Paine TD, Stouthamer R. Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. App Environ Microbiol. 2007;73:7531–7535. doi: 10.1128/AEM.01672-07. PubMed DOI PMC
Semetey O, Gatineau F, Bressan A, Boudon-Padieu E. Characterization of a gamma-3 proteobacteria responsible for the syndrome "basses richesses" of sugar beet transmitted by Pentastiridius sp. (Hemiptera, Cixiidae) Phytopathology. 2007;97:72–78. doi: 10.1094/PHYTO-97-0072. PubMed DOI
Šorfová P, Škeříková A, Hypša V. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Syst and App Microbiol. 2008;31:88–100. doi: 10.1016/j.syapm.2008.02.004. PubMed DOI
Perotti MA, Allen JM, Reed DL, Braig HR. Host-symbiont interactions of the primary endosymbiont of human head and body lice. Faseb Journal. 2007;21:1058–1066. doi: 10.1096/fj.06-6808com. PubMed DOI
Sasaki-Fukatsu K, Koga R, Nikoh N, Yoshizawa K, Kasai S, Mihara M, Kobayashi M, Tomita T, Fukatsu T. Symbiotic bacteria associated with stomach discs of human lice. App Environ Microbiol. 2006;72:7349–7352. doi: 10.1128/AEM.01429-06. PubMed DOI PMC
Fukatsu T, Koga R, Smith WA, Tanaka K, Nikoh N, Sasaki-Fukatsu K, Yoshizawa K, Dale C, Clayton DH. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl Environ Microbiol. 2007;73:6660–6668. doi: 10.1128/AEM.01131-07. PubMed DOI PMC
Herbeck JT, Degnan PH, Wernegreen JJ. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-proteobacteria) Mol Biol Evol. 2005;22:520–532. doi: 10.1093/molbev/msi036. PubMed DOI
Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–189. doi: 10.1146/annurev.micro.59.030804.121041. PubMed DOI
Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A. Endosymbiont phylogenesis in the Dryophthoridae weevils: Evidence for bacterial replacement. Mol Biol Evol. 2004;21:965–973. doi: 10.1093/molbev/msh063. PubMed DOI
Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P. Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae : A peculiar G+C content of an endocytobiotic DNA. J Mol Evol. 1998;47:52–61. doi: 10.1007/PL00006362. PubMed DOI
Galtier N, Gouy M. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 1998;15:871–879. PubMed
Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9:678–687. PubMed
Bergsten J. A review of long-branch attraction. Cladistics. 2005;21:163–193. doi: 10.1111/j.1096-0031.2005.00059.x. PubMed DOI
Hypša V, Křížek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura) Microb Ecology. 2007;54:242–251. doi: 10.1007/s00248-006-9194-x. PubMed DOI
Dittmar K, Porter ML, Murray S, Whiting MF. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins. Mol Phyl Evol. 2006;38:155–170. doi: 10.1016/j.ympev.2005.06.008. PubMed DOI
Sandstrom JP, Russell JA, White JP, Moran NA. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001;10:217–228. doi: 10.1046/j.1365-294X.2001.01189.x. PubMed DOI
Takiya DM, Tran PL, Dietrich CH, Moran NA. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol. 2006;15:4175–4191. doi: 10.1111/j.1365-294X.2006.03071.x. PubMed DOI
Thao ML, Gullan PJ, Baumann P. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. App Environ Microbiol. 2002;68:3190–3197. doi: 10.1128/AEM.68.7.3190-3197.2002. PubMed DOI PMC
Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. PubMed DOI
Heath BD, Butcher RDJ, Whitfield WGF, Hubbard SF. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol. 1999;9:313–316. doi: 10.1016/S0960-9822(99)80139-0. PubMed DOI
Russell JA, Moran NA. Horizontal transfer of bacterial symbionts: Heritability and fitness effects in a novel aphid host. App Environ Microbiol. 2005;71:7987–7994. doi: 10.1128/AEM.71.12.7987-7994.2005. PubMed DOI PMC
Mylvaganam S, Dennis PP. Sequence heterogeneity between the 2 genes encoding 16S ribosomal-RNA from the halophilic archeabacterium Haloarcula marismortui. Genetics. 1992;130:399–410. PubMed PMC
Wang Y, Zwang ZS, Ramanan N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol. 1997;179:3270–3276. PubMed PMC
Miller SR, Sunny A, Olson TL, Blankenship RE, Selker J, Wood M. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA. 2005;102:850–855. doi: 10.1073/pnas.0405667102. PubMed DOI PMC
Wang Y, Zhang ZS. Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology-Sgm. 2000;146:2845–2854. PubMed
Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002;19:2226–2238. PubMed
Lin CK, Hung CL, Chiang YC, Lin CM, Tsen HY. The sequence heterogenicities among 16S rRNA genes of Salmonella serovars and the effects on the specificity of the primers designed. Int J Food Microbiol. 2004;96:205–214. doi: 10.1016/j.ijfoodmicro.2004.03.027. PubMed DOI
Marchandin H, Teyssier C, de Buochberg MS, Jean-Pierre H, Carriere C, Jumas-Bilak E. Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology-Sgm. 2003;149:1493–1501. doi: 10.1099/mic.0.26132-0. PubMed DOI
Pettersson B, Bolske G, Thiaucourt F, Uhlen M, Johansson KE. Molecular evolution of Mycoplasma capricolum subsp. capripneumoniae strains, based on polymorphisms in the 16S rRNA genes. J Bacteriol. 1998;180:2350–2358. PubMed PMC
Yap WH, Zhang ZS, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 1999;181:5201–5209. PubMed PMC
Stewart FJ, Cavanaugh CM. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol. 2007;65:44–67. doi: 10.1007/s00239-006-0235-3. PubMed DOI
Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. App Environ Microbiol. 2004;70:3401–3406. doi: 10.1128/AEM.70.6.3401-3406.2004. PubMed DOI PMC
Dale C, Wang B, Moran N, Ochman H. Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol. 2003;20:1188–1194. doi: 10.1093/molbev/msg138. PubMed DOI
Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. Bmc Evol Biol. 2004;4:14. doi: 10.1186/1471-2148-4-44. PubMed DOI PMC
Ochman H, Wilson AC. Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86. doi: 10.1007/BF02111283. PubMed DOI
Rutschmann F. Bayesian molecular dating using PAML/multidivtime. A step-by-step manual. University of Zurich, Switzerland; 2005. http://www.plant.ch
Gaunt MW, Miles MA. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol. 2002;19:748–761. PubMed
Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol. 2000;15:321–326. doi: 10.1016/S0169-5347(00)01902-9. PubMed DOI
Dale C, Plague GR, Wang B, Ochman H, Moran NA. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci USA. 2002;99:12397–12402. doi: 10.1073/pnas.182213299. PubMed DOI PMC
Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol. 2004;53:95–110. doi: 10.1080/10635150490264842. PubMed DOI
Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: An ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. App Environ Microbiol. 2005;71:8802–8810. doi: 10.1128/AEM.71.12.8802-8810.2005. PubMed DOI PMC
Clark MA, Moran NA, Baumann P, Wernegreen JJ. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution. 2000;54:517–525. PubMed
Duron O, Gavotte L. Absence of Wolbachia in nonfilariid worms parasitizing arthropods. Curr Microbiol. 2007;55:193–197. doi: 10.1007/s00284-006-0578-4. PubMed DOI
Allen JM, Light JE, Perotti MA, Braig HR, Reed DL. Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet. PLoS One. 2009;4(3):e4969. doi: 10.1371/journal.pone.0004969. PubMed DOI PMC
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6(1):27. doi: 10.1186/1741-7007-6-27. PubMed DOI PMC
Baldo L, Werren JH. Revisiting Wolbachia supergroup typing based on WSP: Spurious lineages and discordance with MLST. Curr Microbiol. 2007;55:81–87. doi: 10.1007/s00284-007-0055-8. PubMed DOI
Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology-Sgm. 2005;151:4015–4022. doi: 10.1099/mic.0.28313-0. PubMed DOI
Werren JH. In: Bergey's Manual of Systematic Bacteriology. Garrity GM, editor. Vol. 2. New York: Springer-Verlag; 2004. Arsenophonus.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acid Symp Series. 1999;41:95–98.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. PubMed
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI
Goloboff PA, Farris JS, Nixon KC. TNT. Cladistics-the International Journal of the Willi Hennig Society. 2004;20:84–84.
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996;12:543–548. PubMed
Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics. 2002;161:1307–1320. PubMed PMC
Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts
Association between louse abundance and MHC II supertypes in Galápagos mockingbirds
Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies
Hard ticks and their bacterial endosymbionts (or would be pathogens)