Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies

. 2017 ; 5 () : e4099. [epub] 20171211

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29250466

Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.

Zobrazit více v PubMed

Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genetics. 2002;32:402–407. doi: 10.1038/ng986. PubMed DOI

Aksoy S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. International Journal of Systematic Bacteriology. 1995;45:848–851. doi: 10.1099/00207713-45-4-848. PubMed DOI

Allen JM, Burleigh JG, Light JE, Reed DL. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ. 2016;4:e2187. doi: 10.7717/peerj.2187. PubMed DOI PMC

Allen JM, Reed DL, Perotti MA, Braig HR. Evolutionary relationships of “Candidatus Riesia spp.”, endosymbiotic enterobacteriaceae living within hematophagous primate lice. Applied and Environmental Microbiology. 2007;73:1659–1664. doi: 10.1128/AEM.01877-06. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Attardo GM, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S. Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. Journal of Insect Physiology. 2008;54:1236–1242. doi: 10.1016/j.jinsphys.2008.06.008. PubMed DOI PMC

Balmand S, Lohs C, Aksoy S, Heddi A. Tissue distribution and transmission routes for the tsetse fly endosymbionts. Journal of Invertebrate Pathology. 2013;112:S116–S122. doi: 10.1016/j.jip.2012.04.002. PubMed DOI PMC

Beard CB, Mason PW, Aksoy S, Tesh RB, Richards FF. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. The American Journal of Tropical Medicine and Hygiene. 1992;46:195–200. doi: 10.4269/ajtmh.1992.46.195. PubMed DOI

Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics. 2010;11:449. doi: 10.1186/1471-2164-11-449. PubMed DOI PMC

Ben-Yakir D. Growth retardation of Rhodnius prolixus symbionts by immunizing host against Nocardia (Rhodococcus) rhodnii. Journal of Insect Physiology. 1987;33:379–383. doi: 10.1016/0022-1910(87)90015-1. DOI

Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:10169–10176. doi: 10.1073/pnas.1421388112. PubMed DOI PMC

Black IV WC, Bernhardt SA. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Molecular Biology. 2009;18:705–713. doi: 10.1111/j.1365-2583.2009.00925.x. PubMed DOI

Boyd BM, Allen JM, Koga R, Fukatsu T, Sweet AD, Johnson KP, Reed DL. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura) Applied and Environmental Microbiology. 2016;82:3185–3197. doi: 10.1128/AEM.00282-16. PubMed DOI PMC

Boyd BM, Allen JM, Nguyen N-P, Vachaspati P, Quicksall ZS, Warnow T, Mugisha L, Johnson KP, Reed DL. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Molecular Biology and Evolution. 2017;34:1743–1757. doi: 10.1093/molbev/msx117. PubMed DOI PMC

Brelsfoard C, Tsiamis G, Falchetto M, Gomulski LM, Telleria E, Alam U, Doudoumis V, Scolari F, Benoit JB, Swain M, Takac P, Malacrida AR, Bourtzis K, Aksoy S. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLOS Neglected Tropical Diseases. 2014;8:e2728. doi: 10.1371/journal.pntd.0002728. PubMed DOI PMC

Chari A, Oakeson KF, Enomoto S, Jackson DG, Fisher MA, Dale C. Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. International Journal of Systematic and Evolutionary Microbiology. 2015;65:1400–1405. doi: 10.1099/ijs.0.000091. PubMed DOI PMC

Chrudimský T, Husník F, Nováková E, Hypša V. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLOS ONE. 2012;7:e40354. doi: 10.1371/journal.pone.0040354. PubMed DOI PMC

Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, Von Niederhausern AC, Weiss RB, Fisher M, Dale C. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLOS Genetics. 2012;8:e1002990. doi: 10.1371/journal.pgen.1002990. PubMed DOI PMC

Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, Lemperiere G, Heddi A. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Molecular Biology and Evolution. 2008;25:859–868. doi: 10.1093/molbev/msn027. PubMed DOI

Covacin C, Barker SC. Supergroup F Wolbachia bacteria parasitise lice (Insecta: Phthiraptera) Parasitology Research. 2007;100:479–485. doi: 10.1007/s00436-006-0309-6. PubMed DOI

Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus”, an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Applied and Environmental Microbiology. 2006;72:2997–3004. doi: 10.1128/AEM.72.4.2997-3004.2006. PubMed DOI PMC

Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. International Journal of Systematic Bacteriology. 1999;49(Pt 1):267–275. doi: 10.1099/00207713-49-1-267. PubMed DOI

Dale C, Young SA, Haydon DT, Welburn SC. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:1883–1888. doi: 10.1073/pnas.98.4.1883. PubMed DOI PMC

Darby AC, Choi J-H, Wilkes T, Hughes MA, Werren JH, Hurst GDD, Colbourne JK. Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Molecular Biology. 2010;19(Suppl 1):75–89. doi: 10.1111/j.1365-2583.2009.00950.x. PubMed DOI

De Bruin A, Van Leeuwen AD, Jahfari S, Takken W, Földvári M, Dremmel L, Sprong H, Földvári G. Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites & Vectors. 2015;8:176–181. doi: 10.1186/s13071-015-0764-y. PubMed DOI PMC

Dittmar K, Porter ML, Murray S, Whiting MF. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Molecular Phylogenetics and Evolution. 2006;38:155–170. doi: 10.1016/j.ympev.2005.06.008. PubMed DOI

Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, Nkoghe JO, Rahola N, Tortosa P. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology. 2014;23:2105–2117. doi: 10.1111/mec.12704. PubMed DOI

Duron O, Wilkes TE, Hurst GDD. Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecology Letters. 2010;13:1139–1148. doi: 10.1111/j.1461-0248.2010.01502.x. PubMed DOI

Fukatsu T, Hosokawa T, Koga R, Nikoh N, Kato T, Hayama S, Takefushi H, Tanaka I. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Applied and Environmental Microbiology. 2009;75:3796–3799. doi: 10.1128/AEM.00226-09. PubMed DOI PMC

Geiger A, Ravel S, Frutos R, Cuny G. Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Current Microbiology. 2005;51:35–40. doi: 10.1007/s00284-005-4525-6. PubMed DOI

Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R. Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Molecular Biology and Evolution. 2007;24:102–109. doi: 10.1093/molbev/msl135. PubMed DOI

Gerth M, Gansauge M-T, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature Communications. 2014;5:5117–5123. doi: 10.1038/ncomms6117. PubMed DOI

Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. In: Posada D, editor. Bioinformatics for DNA sequence analysis. Humana Press; Totowa: 2009. pp. 113–137. PubMed DOI

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Halos L, Jamal T, Maillard R, Girard B, Guillot J, Chomel B, Vayssier-Taussat M, Boulouis H-J. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Applied and Environmental Microbiology. 2004;70:6302–6305. doi: 10.1128/AEM.70.10.6302-6305.2004. PubMed DOI PMC

Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:769–774. doi: 10.1073/pnas.0911476107. PubMed DOI PMC

Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, Fukatsu T. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. The ISME Journal. 2012;6:577–587. doi: 10.1038/ismej.2011.125. PubMed DOI PMC

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Husník F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences of the United States of America. 2016;113:E5416–E5424. doi: 10.1073/pnas.1603910113. PubMed DOI PMC

Husník F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, Von Dohlen CD, Fukatsu T, McCutcheon JP. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. CELL. 2013;153:1567–1578. doi: 10.1016/j.cell.2013.05.040. PubMed DOI

Hypša V, Aksoy S. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera: Cimicidae) Insect Molecular Biology. 1997;6:301–304. doi: 10.1046/j.1365-2583.1997.00178.x. PubMed DOI

Hypša V, Dale C. In vitro culture and phylogenetic analysis of “Candidatus Arsenophonus triatominarum”, an intracellular bacterium from the triatomine bug, Triatoma infestans. International Journal of Systematic Bacteriology. 1997;47:1140–1144. doi: 10.1099/00207713-47-4-1140. PubMed DOI

Hypša V, Křížek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura) Microbial Ecology. 2007;54:242–251. doi: 10.1007/s00248-006-9194-x. PubMed DOI

International Glossina Genome Initiative IGG Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–386. doi: 10.1126/science.1249656. PubMed DOI PMC

Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. In: Posada D, editor. Bioinformatics for DNA sequence analysis. Humana Press; Totowa: 2009. pp. 39–64. PubMed DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JMC, Ribeiro JMC, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li H-M, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:12168–12173. doi: 10.1073/pnas.1003379107. PubMed DOI PMC

Koga R, Bennett GM, Cryan JR, Moran NA. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environmental Microbiology. 2013;15:2073–2081. doi: 10.1111/1462-2920.12121. PubMed DOI

Koga R, Tsuchida T, Sakurai M, Fukatsu T. Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiology Ecology. 2007;60:229–239. doi: 10.1111/j.1574-6941.2007.00284.x. PubMed DOI

Kutty SN, Pape T, Wiegmann BM, Meier R. Molecular phylogeny of the Calyptratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily Oestroidea and the position of Mystacinobiidae and McAlpine’s fly. Systematic Entomology. 2010;35:614–635. doi: 10.1111/j.1365-3113.2010.00536.x. DOI

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Maggi RG, Kosoy M, Mintzer M, Breitschwerdt EB. Isolation of Candidatus Bartonella melophagi from human blood. Emerging Infectious Diseases. 2009;15:66–68. doi: 10.3201/eid1501.081080. PubMed DOI PMC

McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nature Reviews. Microbiology. 2012;10:13–26. doi: 10.1038/nrmicro2670. PubMed DOI

Meseguer AS, Manzano-Marín A, Coeur d’Acier A, Clamens A-L, Godefroid M, Jousselin E. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Molecular Ecology. 2017;26:2363–2378. doi: 10.1111/mec.13910. PubMed DOI

Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Applied and Environmental Microbiology. 2014;80:5844–5853. doi: 10.1128/AEM.01150-14. PubMed DOI PMC

Moran NA. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:2873–2878. doi: 10.1073/pnas.93.7.2873. PubMed DOI PMC

Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics. 2008;42:165–190. doi: 10.1146/annurev.genet.41.110306.130119. PubMed DOI

Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae) Applied and Environmental Microbiology. 2013;79:2952–2961. doi: 10.1128/AEM.03814-12. PubMed DOI PMC

Morse SF, Dick CW, Patterson BD, Dittmar K. Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (Hippoboscoidea, Nycterophiliinae) Applied and Environmental Microbiology. 2012a;78:8639–8649. doi: 10.1128/AEM.02455-12. PubMed DOI PMC

Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae) Infection, Genetics and Evolution. 2012b;12:1717–1723. doi: 10.1016/j.meegid.2012.06.009. PubMed DOI

Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, Guy L, Andersson SGE. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Scientific Reports. 2016;6:39197. doi: 10.1038/srep39197. PubMed DOI PMC

Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:10257–10262. doi: 10.1073/pnas.1409284111. PubMed DOI PMC

Nirmala X, Hypša V, Žurovec M. Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. Insect Molecular Biology. 2001;10:475–485. PubMed

Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Applied and Environmental Microbiology. 2015;81:6189–6199. doi: 10.1128/AEM.01487-15. PubMed DOI PMC

Nováková E, Hypša V. A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiology Letters. 2007;269:131–135. doi: 10.1111/j.1574-6968.2006.00620.x. PubMed DOI

Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiology. 2009;9:143. doi: 10.1186/1471-2180-9-143. PubMed DOI PMC

Nováková E, Hypša V, Nguyen P, Husník F, Darby AC. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae) StandArds in Genomic Sciences. 2016;11:1–7. doi: 10.1186/s40793-016-0195-1. PubMed DOI PMC

Oakeson KF, Gil R, Clayton AL, Dunn DM, Von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biology and Evolution. 2014;6:76–93. doi: 10.1093/gbe/evt210. PubMed DOI PMC

Pachebat JA, Van Keulen G, Whitten MMA, Girdwood S, Del Sol R, Dyson PJ, Facey PD. Draft genome sequence of Rhodococcus rhodnii strain LMG5362, a symbiont of Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), the principle vector of Trypanosoma cruzi. Genome Announcements. 2013;1:e00329-13. doi: 10.1128/genomeA.00329-13. PubMed DOI PMC

Pais R, Balmand S, Takac P, Alam U, Carnogursky J, Brelsfoard C, Galvani A, Aksoy S, Medlock J, Heddi A, Lohs C. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLOS Pathogens. 2011;7:e1002415. doi: 10.1371/journal.ppat.1002415. PubMed DOI PMC

Pais R, Lohs C, Wu Y, Wang J, Aksoy S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Applied and Environmental Microbiology. 2008;74:5965–5974. doi: 10.1128/AEM.00741-08. PubMed DOI PMC

Petersen FT, Meier R, Kutty SN, Wiegmann BM. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Molecular Phylogenetics and Evolution. 2007;45:111–122. doi: 10.1016/j.ympev.2007.04.023. PubMed DOI

Posada D. Selection of models of DNA evolution with jModelTest. In: Posada D, editor. Bioinformatics for DNA sequence analysis. Humana Press; Totowa: 2009. pp. 93–112. PubMed DOI

Rio RVM, Symula RE, Wang J, Lohs C, Wu Y, Snyder AK, Bjornson RD, Oshima K, Biehl BS, Perna NT, Hattori M, Aksoy S. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. mBio. 2012;3:e00240-11. doi: 10.1128/mBio.00240-11. PubMed DOI PMC

Schilthuizen M, Stouthamer R. Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proceedings. Biological Sciences/the Royal Society. 1997;264:361–366. doi: 10.1098/rspb.1997.0052. PubMed DOI PMC

Segers FH, Kešnerová L, Kosoy M, Engel P. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. The ISME Journal. 2016;11(5):1232–1244. doi: 10.1038/ismej.2016.201. PubMed DOI PMC

Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution. 2014;31:857–871. doi: 10.1093/molbev/msu004. PubMed DOI PMC

Smith SA, Dunn CW. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics. 2008;24:715–716. doi: 10.1093/bioinformatics/btm619. PubMed DOI

Smith WA, Oakeson KF, Johnson KP, Reed DL, Carter T, Smith KL, Koga R, Fukatsu T, Clayton DH, Dale C. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements. BMC Evolutionary Biology. 2013;13:1. doi: 10.1186/1471-2148-13-109. PubMed DOI PMC

Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proceedings of the Royal Society B: Biological Sciences. 2010;277:2389–2397. doi: 10.1098/rspb.2010.0364. PubMed DOI PMC

Snyder AK, Rio RVM. “Wigglesworthia morsitans” folate (Vitamin B9) biosynthesis contributes to tsetse host fitness. Applied and Environmental Microbiology. 2015;81:5375–5386. doi: 10.1128/AEM.00553-15. PubMed DOI PMC

Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends in Microbiology. 2017;25:375–390. doi: 10.1016/j.tim.2017.02.014. PubMed DOI

Toh H, Weiss BL, Perkin S a H, Yamashita A, Oshima K, Hattori M, Aksoy S. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Research. 2006;16:149–156. doi: 10.1101/gr.4106106. PubMed DOI PMC

Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea) Journal of Invertebrate Pathology. 2006;91:64–68. doi: 10.1016/j.jip.2005.08.009. PubMed DOI

Šorfová P, Škeříková A, Hypša V. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Systematic and Applied Microbiology. 2008;31:88–100. doi: 10.1016/j.syapm.2008.02.004. PubMed DOI

Weiss BL, Maltz MA, Aksoy S. Obligate symbionts activate immune system development in the tsetse fly. Journal of Immunology. 2012;188:3395–3403. doi: 10.4049/jimmunol.1103691. PubMed DOI PMC

Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLOS Pathogens. 2013;9:e1003318. doi: 10.1371/journal.ppat.1003318. PubMed DOI PMC

Weiss BL, Wu Y, Schwank JJ, Tolwinski NS, Aksoy S. An insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:15088–15093. doi: 10.1073/pnas.0805666105. PubMed DOI PMC

Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nature Reviews. Genetics. 2002;3:850–861. doi: 10.1038/nrg931. PubMed DOI

Wilkes TE, Darby AC, Choi J-H, Colbourne JK, Werren JH, Hurst GDD. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Molecular Biology. 2010;19(Suppl 1):59–73. doi: 10.1111/j.1365-2583.2009.00963.x. PubMed DOI

Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, Goodman SM, Tortosa P. The bacteriome of bat flies (Nycteribiidae) from the Malagasy region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Applied and Environmental Microbiology. 2016;82:1778–1788. doi: 10.1128/AEM.03505-15. PubMed DOI PMC

Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews. 2008;32:723–735. doi: 10.1111/j.1574-6976.2008.00123.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...