Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
27573819
PubMed Central
PMC5027413
DOI
10.1073/pnas.1603910113
PII: 1603910113
Knihovny.cz E-zdroje
- Klíčová slova
- Sodalis, horizontal gene transfer, organelle, scale insect,
- MeSH
- Betaproteobacteria genetika růst a vývoj MeSH
- fylogeneze MeSH
- Gammaproteobacteria genetika růst a vývoj MeSH
- genom bakteriální MeSH
- Planococcus (hmyz) genetika mikrobiologie MeSH
- přenos genů horizontální genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.
Zobrazit více v PubMed
Gray MW, Doolittle WF. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982;46(1):1–42. PubMed PMC
Palmer JD. Organelle genomes: Going, going, gone! Science. 1997;275(5301):790–791. PubMed
Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41. PubMed
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440(7084):623–630. PubMed
Douglas AE. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989;64(4):409–434. PubMed
Nowack ECM, Melkonian M. Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci. 2010;365(1541):699–712. PubMed PMC
Stewart FJ, Newton ILG, Cavanaugh CM. Chemosynthetic endosymbioses: Adaptations to oxic-anoxic interfaces. Trends Microbiol. 2005;13(9):439–448. PubMed
Nakayama T, Ishida K. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol. 2009;19(7):R284–R285. PubMed
Husnik F, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153(7):1567–1578. PubMed
Sloan DB, et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 2014;31(4):857–871. PubMed PMC
Luan J-B, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 2015;7(9):2635–2647. PubMed PMC
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2011;10(1):13–26. PubMed
Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215. PubMed
Nikoh N, et al. Bacterial genes in the aphid genome: Absence of functional gene transfer from Buchnera to its host. PLoS Genet. 2010;6(2):e1000827. PubMed PMC
Nowack ECM, et al. Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol. 2011;28(1):407–422. PubMed
Nowack ECM, Grossman AR. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci USA. 2012;109(14):5340–5345. PubMed PMC
Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol. 2014;24(14):R640–R641. PubMed
Theissen U, Martin W. The difference between organelles and endosymbionts. Curr Biol. 2006;16(24):R1016–R1017. PubMed
Keeling PJ, Archibald JM. Organelle evolution: What’s in a name? Curr Biol. 2008;18(8):R345–R347. PubMed
McCutcheon JP, Keeling PJ. Endosymbiosis: Protein targeting further erodes the organelle/symbiont distinction. Curr Biol. 2014;24(14):R654–R655. PubMed
Keeling PJ, McCutcheon JP, Doolittle WF. Symbiosis becoming permanent: Survival of the luckiest. Proc Natl Acad Sci USA. 2015;112(33):10101–10103. PubMed PMC
Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29(12):3781–3792. PubMed PMC
Bennett GM, Moran NA. Small, smaller, smallest: The origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biol Evol. 2013;5(9):1675–1688. PubMed PMC
Nakabachi A, et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 2013;23(15):1478–1484. PubMed
Manzano-Marín A, Latorre A. Settling down: The genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life. Genome Biol Evol. 2014;6(7):1683–1698. PubMed PMC
Moran NA. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA. 1996;93(7):2873–2878. PubMed PMC
Fares MA, Barrio E, Sabater-Muñoz B, Moya A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol. 2002;19(7):1162–1170. PubMed
Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112(33):10169–10176. PubMed PMC
Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE. Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol. 2013;30(2):347–355. PubMed
Cooper BS, Burrus CR, Ji C, Hahn MW, Montooth KL. Similar efficacies of selection shape mitochondrial and nuclear genes in both Drosophila melanogaster and Homo sapiens. G3 (Bethesda) 2015;5(10):2165–2176. PubMed PMC
Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci USA. 2015;112(33):10177–10184. PubMed PMC
McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104(49):19392–19397. PubMed PMC
Koga R, Bennett GM, Cryan JR, Moran NA. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol. 2013;15(7):2073–2081. PubMed
Koga R, Moran NA. Swapping symbionts in spittlebugs: Evolutionary replacement of a reduced genome symbiont. ISME J. 2014;8(6):1237–1246. PubMed PMC
Thao ML, et al. Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol. 2000;41(4):300–304. PubMed
Lamelas A, et al. Serratia symbiotica from the aphid Cinara cedri: A missing link from facultative to obligate insect endosymbiont. PLoS Genet. 2011;7(11):e1002357. PubMed PMC
Vogel KJ, Moran NA. Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genome Biol Evol. 2013;5(5):891–904. PubMed PMC
Smith WA, et al. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: Evidence for repeated symbiont replacements. BMC Evol Biol. 2013;13(1):109. PubMed PMC
Lefèvre C, et al. Endosymbiont phylogenesis in the dryophthoridae weevils: Evidence for bacterial replacement. Mol Biol Evol. 2004;21(6):965–973. PubMed
Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T. Diversification of endosymbiosis: Replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J. 2013;7(7):1378–1390. PubMed PMC
Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily phenacoccinae (hemiptera: Coccoidea: Pseudococcidae) Appl Environ Microbiol. 2010;76(22):7521–7525. PubMed PMC
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21(16):1366–1372. PubMed PMC
Thao ML, Gullan PJ, Baumann P. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol. 2002;68(7):3190–3197. PubMed PMC
Kono M, Koga R, Shimada M, Fukatsu T. Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol. 2008;74(13):4175–4184. PubMed PMC
von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature. 2001;412(6845):433–436. PubMed
López-Madrigal S, et al. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Front Microbiol. 2014;5:449. PubMed PMC
Parkinson JF, Gobin B, Hughes WOH. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis. Ecol Evol. 2016;6(7):2053–2060. PubMed PMC
Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christeller JT. Molecular and histological characterization of primary (betaproteobacteria) and secondary (gammaproteobacteria) endosymbionts of three mealybug species. Appl Environ Microbiol. 2012;78(4):1187–1197. PubMed PMC
Koga R, Nikoh N, Matsuura Y, Meng XY, Fukatsu T. Mealybugs with distinct endosymbiotic systems living on the same host plant. FEMS Microbiol Ecol. 2013;83(1):93–100. PubMed
Buchner P. Endosymbiosis of Animals with Plant Microorganisms. Interscience Publishers; New York: 1965. p. 909.
Denton JF, et al. Extensive error in the number of genes inferred from draft genome assemblies. PLOS Comput Biol. 2014;10(12):e1003998. PubMed PMC
International Aphid Genomics Consortium Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010;8(2):e1000313. PubMed PMC
Moran NA, Mira A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2001;2(12):H0054. PubMed PMC
Frank AC, Amiri H, Andersson SG. Genome deterioration: Loss of repeated sequences and accumulation of junk DNA. Genetica. 2002;115(1):1–12. PubMed
Moran NA. Microbial minimalism: Genome reduction in bacterial pathogens. Cell. 2002;108(5):583–586. PubMed
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–190. PubMed
Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: Genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9(3):218–229. PubMed
Clayton AL, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet. 2012;8(11):e1002990. PubMed PMC
Oakeson KF, et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol. 2014;6(1):76–93. PubMed PMC
McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol. 2010;2:708–718. PubMed PMC
Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea) J Evol Biol. 2012;25(11):2357–2368. PubMed
Toh H, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16(2):149–156. PubMed PMC
Hosokawa T, Kaiwa N, Matsuura Y, Kikuchi Y, Fukatsu T. Infection prevalence of Sodalis symbionts among stinkbugs. Zoological Lett. 2015;1(1):5. PubMed PMC
Dale C, Young SA, Haydon DT, Welburn SC. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci USA. 2001;98(4):1883–1888. PubMed PMC
Duncan RP, et al. Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Mol Ecol. 2014;23(6):1608–1623. PubMed
Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Struct Dev. 2014;43(6):579–587. PubMed
Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma. 2016;253(3):903–912. PubMed PMC
Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One. 2014;9(10):e110685. PubMed PMC
Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun. 2014;5:4937. PubMed
Booth A, Doolittle WF. Eukaryogenesis, how special really? Proc Natl Acad Sci USA. 2015;112(33):10278–10285. PubMed PMC
Kurland CG, Andersson SG. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev. 2000;64(4):786–820. PubMed PMC
Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci USA. 2015;112(33):10133–10138. PubMed PMC
Ku C, et al. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proc Natl Acad Sci USA. 2015;112(33):10139–10146. PubMed PMC
Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22:38–48. PubMed
Ettema TJG. Evolution: Mitochondria in the second act. Nature. 2016;531(7592):39–40. PubMed
Pittis AA, Gabaldón T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature. 2016;531(7592):101–104. PubMed PMC
Ku C, et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature. 2015;524(7566):427–432. PubMed
Koonin EV. Archaeal ancestors of eukaryotes: Not so elusive any more. BMC Biol. 2015;13(1):84. PubMed PMC
Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007;12(5):189–195. PubMed
Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature. 2002;417(6887):398. PubMed
Andersson JO, Andersson SG. Insights into the evolutionary process of genome degradation. Curr Opin Genet Dev. 1999;9(6):664–671. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. PubMed PMC
Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. PubMed PMC
Boisvert S, Laviolette F, Corbeil J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010;17(11):1519–1533. PubMed PMC
Ruby JG, Bellare P, Derisi JL. PRICE: Software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda) 2013;3(5):865–880. PubMed PMC
Walker BJ, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. PubMed PMC
Hunt M, et al. REAPR: A universal tool for genome assembly evaluation. Genome Biol. 2013;14(5):R47. PubMed PMC
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. PubMed
Konwar KM, Hanson NW, Pagé AP, Hallam SJ. MetaPathways: A modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinformatics. 2013;14(1):202. PubMed PMC
Karp PD, et al. Pathway Tools version 13.0: Integrated software for pathway/genome informatics and systems biology. Brief Bioinform. 2010;11(1):40–79. PubMed PMC
Jones P, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240. PubMed PMC
Rutherford K, et al. Artemis: Sequence visualization and annotation. Bioinformatics. 2000;16(10):944–945. PubMed
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. PubMed PMC
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286–298. PubMed
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. PubMed PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. PubMed PMC
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–1574. PubMed
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62(4):611–615. PubMed
Darling AE, Mau B, Perna NT. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147. PubMed PMC
Li L, Stoeckert CJ, Jr, Roos DS. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–2189. PubMed PMC
Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: Exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Front Genet. 2013;4:237. PubMed PMC
Koutsovoulos G, et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc Natl Acad Sci USA. 2016;113(18):5053–5058. PubMed PMC
Delmont TO, Eren AM. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ. 2016;4:e1839. PubMed PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. PubMed PMC
Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–1067. PubMed
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–3212. PubMed
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33(20):6494–6506. PubMed PMC
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–2489. PubMed PMC
Huerta-Cepas J, Dopazo J, Gabaldón T. ETE: A python environment for tree exploration. BMC Bioinformatics. 2010;11(1):24. PubMed PMC
Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell. 2014;158(6):1270–1280. PubMed
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. PubMed PMC
Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite
Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies