A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34951405
PubMed Central
PMC8709577
DOI
10.7554/elife.72747
PII: 72747
Knihovny.cz E-zdroje
- Klíčová slova
- Francisella, Hyalomma, Midichloria, endosymbiosis, evolutionary biology, hematophagy,
- MeSH
- Francisella genetika metabolismus MeSH
- Ixodidae mikrobiologie fyziologie MeSH
- přenos genů horizontální MeSH
- Rickettsiales genetika metabolismus MeSH
- symbióza fyziologie MeSH
- vitamin B komplex biosyntéza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vitamin B komplex MeSH
Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.
Center of Rickettsiosis and Arthropod Borne Diseases Logroño Spain
Centre of Research in Ecology and Evolution of Diseases Montpellier France Montpellier France
Department of Biology and Biotechnology L Spallanzani University of Pavia Pavia Italy
Department of Veterinary Medicine University of Milan Lodi Italy
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Research. 2012;40:1–13. doi: 10.1093/nar/gks406. PubMed DOI PMC
Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology. 2019;20:1–17. doi: 10.1186/s13059-019-1829-6. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. ScienceOpen, Inc; 2010.
Azagi T, Klement E, Perlman G, Lustig Y, Mumcuoglu KY, Apanaskevich DA, Gottlieb Y. Francisella-Like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks. Applied and Environmental Microbiology. 2017;83:1–14. doi: 10.1128/AEM.01302-17. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Bates D, Mächler M, Bolker BM, Walker SC. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67:i01. doi: 10.18637/jss.v067.i01. DOI
Ben-Yosef M, Rot A, Mahagna M, Kapri E, Behar A, Gottlieb Y. Coxiella-Like Endosymbiont of Rhipicephalus sanguineus Is Required for Physiological Processes During Ontogeny. Frontiers in Microbiology. 2020;11:1–16. doi: 10.3389/fmicb.2020.00493. PubMed DOI PMC
Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. PNAS. 2015;112:10169–10176. doi: 10.1073/pnas.1421388112. PubMed DOI PMC
Binetruy F, Buysse M, Lejarre Q, Barosi R, Villa M, Rahola N, Paupy C, Ayala D, Duron O. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Molecular Ecology. 2020;29:1016–1029. doi: 10.1111/mec.15373. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunology. 2021;43:1–12. doi: 10.1111/pim.12813. PubMed DOI
Buysse M, Plantard O, McCoy KD, Duron O, Menard C. Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks and Tick-Borne Diseases. 2019;10:798–804. doi: 10.1016/j.ttbdis.2019.03.014. PubMed DOI
Buysse M, Duron O. Evidence that microbes identified as tick-borne pathogens are nutritional endosymbionts. Cell. 2021;184:2259–2260. doi: 10.1016/j.cell.2021.03.053. PubMed DOI
Buysse M, Nardi T, Floriano MF. Hmar-2021. a459aeeGitHub. 2021 https://github.com/mariebuysse/Hmar-2021
Campbell MA, Van Leuven JT, Meister RC, Carey KM, Simon C, McCutcheon JP. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. PNAS. 2015;112:10192–10199. doi: 10.1073/pnas.1421386112. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35. doi: 10.1186/1471-2105-12-35. PubMed DOI PMC
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution. 2020;37:291–294. doi: 10.1093/molbev/msz189. PubMed DOI PMC
Di Lecce I, Bazzocchi C, Cecere JG, Epis S, Sassera D, Villani BM, Bazzi G, Negri A, Saino N, Spina F, Bandi C, Rubolini D. Patterns of Midichloria infection in avian-borne African ticks and their trans-Saharan migratory hosts. Parasites & Vectors. 2018;11:106. doi: 10.1186/s13071-018-2669-z. PubMed DOI PMC
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ. 2020;8:1–39. doi: 10.7717/peerj.10646. PubMed DOI PMC
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology. 2008;6:1–12. doi: 10.1186/1741-7007-6-27. PubMed DOI PMC
Duron O, Binetruy F, Noël V, Cremaschi J, McCoy KD, Arnathau C, Plantard O, Goolsby J, Pérez de León AA, Heylen DJA, Van Oosten AR, Gottlieb Y, Baneth G, Guglielmone AA, Estrada-Peña A, Opara MN, Zenner L, Vavre F, Chevillon C. Evolutionary changes in symbiont community structure in ticks. Molecular Ecology. 2017;26:2905–2921. doi: 10.1111/mec.14094. PubMed DOI
Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, Loire E, Ménard C, Bouchez O, Vavre F, Vial L. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Current Biology. 2018;28:1896–1902. doi: 10.1016/j.cub.2018.04.038. PubMed DOI
Duron O, Gottlieb Y. Convergence of Nutritional Symbioses in Obligate Blood Feeders. Trends in Parasitology. 2020;36:816–825. doi: 10.1016/j.pt.2020.07.007. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology. 2019;20:1–14. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Research. 2015;43:D261–D269. doi: 10.1093/nar/gku1223. PubMed DOI PMC
Gerhart JG, Moses AS, Raghavan R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Scientific Reports. 2016;6:1–6. doi: 10.1038/srep33670. PubMed DOI PMC
Gerhart JG, Auguste Dutcher H, Brenner AE, Moses AS, Grubhoffer L, Raghavan R. Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks. Genome Biology and Evolution. 2018;10:607–615. doi: 10.1093/gbe/evy021. PubMed DOI PMC
Gerth M, Bleidorn C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nature Microbiology. 2016;2:16241. doi: 10.1038/nmicrobiol.2016.241. PubMed DOI
Giladi M, Altman-Price N, Levin I, Levy L, Mevarech M. FolM, a new chromosomally encoded dihydrofolate reductase in Escherichia coli. Journal of Bacteriology. 2003;185:7015–7018. doi: 10.1128/JB.185.23.7015-7018.2003. PubMed DOI PMC
Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, Nordberg E, Shukla M, Walenz B, Hill CA, Nene VM, Azad AF, Sobral BW, Caler E. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. Journal of Bacteriology. 2012;194:376–394. doi: 10.1128/JB.06244-11. PubMed DOI PMC
Gottlieb Y, Lalzar I, Klasson L. Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks. Genome Biology and Evolution. 2015;7:1779–1796. doi: 10.1093/gbe/evv108. PubMed DOI PMC
Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites & Vectors. 2018;11:12. doi: 10.1186/s13071-017-2550-5. PubMed DOI PMC
Guizzo MG, Parizi LF, Nunes RD, Schama R, Albano RM, Tirloni L, Oldiges DP, Vieira RP, Oliveira WHC, Leite MDS, Gonzales SA, Farber M, Martins O, Vaz IDS, Oliveira PL. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Scientific Reports. 2017;7:1–10. doi: 10.1038/s41598-017-17309-x. PubMed DOI PMC
Gulia-Nuss M. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Guy L. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;27:2334–2335. doi: 10.1093/bioinformatics/btq413. PubMed DOI PMC
Hugoson E, Lam WT, Guy L. MiComplete: Weighted quality evaluation of assembled microbial genomes. Bioinformatics. 2020;36:936–937. doi: 10.1093/bioinformatics/btz664. PubMed DOI PMC
Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. PNAS. 2016;113:E5416–E5424. doi: 10.1073/pnas.1603910113. PubMed DOI PMC
Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, Jiang J-F, Wang Q, Zhang B, Ji P, Bell-Sakyi L, Cui X-M, Yuan T-T, Jiang B-G, Yang W-F, Lam TT-Y, Chang Q-C, Ding S-J, Wang X-J, Zhu J-G, Ruan X-D, Zhao L, Wei J-T, Ye R-Z, Que TC, Du C-H, Zhou Y-H, Cheng JX, Dai P-F, Guo W-B, Han X-H, Huang E-J, Li L-F, Wei W, Gao Y-C, Liu J-Z, Shao H-Z, Wang X, Wang C-C, Yang T-C, Huo Q-B, Li W, Chen H-Y, Chen S-E, Zhou L-G, Ni X-B, Tian J-H, Sheng Y, Liu T, Pan Y-S, Xia L-Y, Li J, Tick Genome and Microbiome Consortium (TIGMIC) Zhao F, Cao W-C. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell. 2020;182:1328–1340. doi: 10.1016/j.cell.2020.07.023. PubMed DOI
Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, Zhang KJ, Huang HJ, Gong JT, Zhang X, Hong XY. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. The ISME Journal. 2020;14:676–687. doi: 10.1038/s41396-019-0559-9. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Kent BN, Bordenstein SR. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends in Microbiology. 2010;18:173–181. doi: 10.1016/j.tim.2009.12.011. PubMed DOI PMC
Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Frontiers in Genetics. 2013;4:1–12. doi: 10.3389/fgene.2013.00237. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Lukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. PNAS. 2018;115:E226–E235. doi: 10.1073/pnas.1712321115. PubMed DOI PMC
Machado-Ferreira E, Vizzoni VF, Balsemão-Pires E, Moerbeck L, Gazeta GS, Piesman J, Voloch CM, Soares CAG. Coxiella symbionts are widespread into hard ticks. Parasitology Research. 2016;115:4691–4699. doi: 10.1007/s00436-016-5230-z. PubMed DOI
Manzano-Marın A, Coeur d’acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. The ISME Journal. 2020;14:259–273. doi: 10.1038/s41396-019-0533-6. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY, McCutcheon JP, Fukatsu T. Recurrent symbiont recruitment from fungal parasites in cicadas. PNAS. 2018;115:E5970–E5979. doi: 10.1073/pnas.1803245115. PubMed DOI PMC
McCutcheon JP, Boyd BM, Dale C. The Life of an Insect Endosymbiont from the Cradle to the Grave. Current Biology. 2019;29:R485–R495. doi: 10.1016/j.cub.2019.03.032. PubMed DOI
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends in Parasitology. 2015;31:315–323. doi: 10.1016/j.pt.2015.03.010. PubMed DOI PMC
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends in Parasitology. 2021;37:722–733. doi: 10.1016/j.pt.2021.04.004. PubMed DOI PMC
Nardi T, Olivieri E, Kariuki E, Sassera D, Castelli M. Sequence of a Coxiella Endosymbiont of the Tick Amblyomma nuttalli Suggests a Pattern of Convergent Genome Reduction in the Coxiella Genus. Genome Biology and Evolution. 2021;13:1–7. doi: 10.1093/gbe/evaa253. PubMed DOI PMC
Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. PNAS. 2014;111:10257–10262. doi: 10.1073/pnas.1409284111. PubMed DOI PMC
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SA, Hunter MS, Horn M. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLOS Genetics. 2012;8:e1003012. doi: 10.1371/journal.pgen.1003012. PubMed DOI PMC
Perner J, Sobotka R, Sima R, Konvickova J, Sojka D, Oliveira P de, Hajdusek O, Kopacek P. Acquisition of exogenous haem is essential for tick reproduction. eLife. 2016;5:e12318. doi: 10.7554/eLife.12318. PubMed DOI PMC
Ríhová J, Nováková E, Husník F, Hypša V. Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata. Genome Biology and Evolution. 2017;9:2946–2957. doi: 10.1093/gbe/evx217. PubMed DOI PMC
Santos-Garcia D, Rollat-Farnier PA, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biology and Evolution. 2014;6:1013–1030. doi: 10.1093/gbe/evu077. PubMed DOI PMC
Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, Morin S, Silva FJ. To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies. Frontiers in Microbiology. 2018;9:1–16. doi: 10.3389/fmicb.2018.02254. PubMed DOI PMC
Sassera D, Beninati T, Bandi C, Bouman EAP, Sacchi L, Fabbi M, Lo N. “Candidatus Midichloria mitochondrii”, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology. 2006;56:2535–2540. doi: 10.1099/ijs.0.64386-0. PubMed DOI
Sassera D, Lo N, Epis S, D’Auria G, Montagna M, Comandatore F, Horner D, Peretó J, Luciano AM, Franciosi F, Ferri E, Crotti E, Bazzocchi C, Daffonchio D, Sacchi L, Moya A, Latorre A, Bandi C. Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor. Molecular Biology and Evolution. 2011;28:3285–3296. doi: 10.1093/molbev/msr159. PubMed DOI
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Selmi R, Ben Said M, Mamlouk A, Ben Yahia H, Messadi L. Molecular detection and genetic characterization of the potentially pathogenic Coxiella burnetii and the endosymbiotic Candidatus Midichloria mitochondrii in ticks infesting camels (Camelus dromedarius) from Tunisia. Microbial Pathogenesis. 2019;136:103655. doi: 10.1016/j.micpath.2019.103655. PubMed DOI
Smith TA, Driscoll T, Gillespie JJ, Raghavan R. A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biology and Evolution. 2015;7:831–838. doi: 10.1093/gbe/evv016. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005;21:537–539. doi: 10.1093/bioinformatics/bti054. PubMed DOI
Sudakaran S, Kost C, Kaltenpoth M. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends in Microbiology. 2017;25:375–390. doi: 10.1016/j.tim.2017.02.014. PubMed DOI
Syberg-Olsen M, Garber A, Keeling P, McCutcheon J, Husnik F. Pseudofinder: Detection of Pseudogenes in Prokaryotic Genomes. bioRxiv. 2020 doi: 10.1101/2021.10.07.463580. PubMed DOI PMC
Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, Shinzato N. Tripartite Symbiosis of an Anaerobic Scuticociliate with Two Hydrogenosome-Associated Endosymbionts, a Holospora-Related Alphaproteobacterium and a Methanogenic Archaeon. Applied and Environmental Microbiology. 2019;85:1–14. doi: 10.1128/AEM.00854-19. PubMed DOI PMC
Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SGE. Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. PNAS. 2008;105:14934–14939. doi: 10.1073/pnas.0806554105. PubMed DOI PMC
Vautrin E, Vavre F. Interactions between vertically transmitted symbionts: cooperation or conflict? Trends in Microbiology. 2009;17:95–99. doi: 10.1016/j.tim.2008.12.002. PubMed DOI
Vial L, Stachurski F, Leblond A, Huber K, Vourc’h G, René-Martellet M, Desjardins I, Balança G, Grosbois V, Pradier S, Gély M, Appelgren A, Estrada-Peña A. Strong evidence for the presence of the tick Hyalomma marginatum Koch, 1844 in southern continental France. Ticks and Tick-Borne Diseases. 2016;7:1162–1167. doi: 10.1016/j.ttbdis.2016.08.002. PubMed DOI
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. doi: 10.1093/bioinformatics/btv383. PubMed DOI PMC
Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics. 2017;33:3340–3347. doi: 10.1093/bioinformatics/btx433. PubMed DOI
Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLOS ONE. 2007;2:e00405. doi: 10.1371/journal.pone.0000405. PubMed DOI PMC
Ixodes ricinus ticks have a functional association with Midichloria mitochondrii