Ixodes ricinus ticks have a functional association with Midichloria mitochondrii
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36699720
PubMed Central
PMC9868949
DOI
10.3389/fcimb.2022.1081666
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, Midichloria, membrane feeding, mitochondria, symbionts, tetracycline, ticks,
- MeSH
- antibakteriální látky MeSH
- klíště * mikrobiologie MeSH
- mitochondrie MeSH
- symbióza MeSH
- tetracyklin MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- tetracyklin MeSH
In addition to being vectors of pathogenic bacteria, ticks also harbor intracellular bacteria that associate with ticks over generations, aka symbionts. The biological significance of such bacterial symbiosis has been described in several tick species but its function in Ixodes ricinus is not understood. We have previously shown that I. ricinus ticks are primarily inhabited by a single species of symbiont, Midichloria mitochondrii, an intracellular bacterium that resides and reproduces mainly in the mitochondria of ovaries of fully engorged I. ricinus females. To study the functional integration of M. mitochondrii into the biology of I. ricinus, an M. mitochondrii-depleted model of I. ricinus ticks was sought. Various techniques have been described in the literature to achieve dysbiosed or apo-symbiotic ticks with various degrees of success. To address the lack of a standardized experimental procedure for the production of apo-symbiotic ticks, we present here an approach utilizing the ex vivo membrane blood feeding system. In order to deplete M. mitochondrii from ovaries, we supplemented dietary blood with tetracycline. We noted, however, that the use of tetracycline caused immediate toxicity in ticks, caused by impairment of mitochondrial proteosynthesis. To overcome the tetracycline-mediated off-target effect, we established a protocol that leads to the production of an apo-symbiotic strain of I. ricinus, which can be sustained in subsequent generations. In two generations following tetracycline administration and tetracycline-mediated symbiont reduction, M. mitochondrii was gradually eliminated from the lineage. Larvae hatched from eggs laid by such M. mitochondrii-free females repeatedly performed poorly during blood-feeding, while the nymphs and adults performed similarly to controls. These data indicate that M. mitochondrii represents an integral component of tick ovarian tissue, and when absent, results in the formation of substandard larvae with reduced capacity to blood-feed.
CEITEC University of Veterinary Sciences Brno Czechia
Department of Chemistry and Biochemistry Mendel University Brno Czechia
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Bell-Sakyi L., Zweygarth E., Blouin E. F., Gould E. A., Jongejan F. (2007). Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 23, 450–457. doi: 10.1016/j.pt.2007.07.009 PubMed DOI
Ben-Yosef M., Rot A., Mahagna M., Kapri E., Behar A., Gottlieb Y. (2020). Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00493 PubMed DOI PMC
Bonnet S. I., Binetruy F., Hernández-Jarguín A. M., Duron O. (2017). The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7. doi: 10.3389/fcimb.2017.00236 PubMed DOI PMC
Buysse M., Duron O. (2018). Multi-locus phylogenetics of the midichloria endosymbionts reveals variable specificity of association with ticks. Parasitology 145, 1969–1978. doi: 10.1017/s0031182018000793 PubMed DOI
Buysse M., Floriano A. M., Gottlieb Y., Nardi T., Comandatore F., Olivieri E., et al. . (2021). A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum . eLife 10, e72747. doi: 10.7554/eLife.72747 PubMed DOI PMC
Comandatore F., Radaelli G., Montante S., Sacchi L., Clementi E., Epis S., et al. . (2021). Modeling the life cycle of the intramitochondrial bacterium "Candidatus Midichloria mitochondrii" using electron microscopy data. mBio 12, e0057421. doi: 10.1128/mBio.00574-21 PubMed DOI PMC
Coon K. L., Vogel K. J., Brown M. R., Strand M. R. (2014). Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739. doi: 10.1111/mec.12771 PubMed DOI PMC
Correa M. A., Matusovsky B., Brackney D. E., Steven B. (2018). Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun 9, 4464. doi: 10.1038/s41467-018-07014-2 PubMed DOI PMC
Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47. doi: 10.1111/j.1365-2435.2008.01442.x DOI
Douglas A. E. (2014). Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harbor Perspect. Biol. 6, a016113–a016113. doi: 10.1101/cshperspect.a016113 PubMed DOI PMC
Douglas A. E. (2020). Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190603. doi: 10.1098/rstb.2019.0603 PubMed DOI PMC
Duron O., Morel O., Noël V., Buysse M., Binetruy F., Lancelot R., et al. . (2018). Tick-bacteria mutualism depends on b vitamin synthesis pathways. Curr. Biol. 28, 1896–1902.e1895. doi: 10.1016/j.cub.2018.04.038 PubMed DOI
Epis S., Sassera D., Beninati T., Lo N., Beati L., Piesman J., et al. . (2008). Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135, 485–494. doi: 10.1017/S0031182007004052 PubMed DOI
Esser D., Lange J., Marinos G., Sieber M., Best L., Prasse D., et al. . (2019). Functions of the microbiota for the physiology of animal metaorganisms. J. Innate Immun. 11, 393–404. doi: 10.1159/000495115 PubMed DOI PMC
Gilliland C.A., Patel V., Dombrowski A.C., Mackett B.M., Vogel K.J. (2022), Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol Ecol. doi: 10.1111/mec.16800 PubMed DOI PMC
Gonzalez J., Bickerton M., Toledo A. (2021). Applications of artificial membrane feeding for ixodid ticks. Acta Trop. 215, 105818. doi: 10.1016/j.actatropica.2020.105818 PubMed DOI
Guizzo M. G., Neupane S., Kucera M., Perner J., Frantová H., Da Silva Vaz I., et al. . (2020). Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front. Cell. Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.00211 PubMed DOI PMC
Guizzo M. G., Parizi L. F., Nunes R. D., Schama R., Albano R. M., Tirloni L., et al. . (2017). A coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus . Sci Rep 7, 17554. doi: 10.1038/s41598-017-17309-x PubMed DOI PMC
Guizzo M. G., Tirloni L., Gonzalez S. A., Farber M. D., Braz G., Parizi L. F., et al. . (2022). Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.868575 PubMed DOI PMC
Hajdusek O., Sojka D., Kopacek P., Buresova V., Franta Z., Sauman I., et al. . (2009). Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. 106, 1033–1038. doi: 10.1073/pnas.0807961106 PubMed DOI PMC
Hammer T. J., Sanders J. G., Fierer N. (2019). Not all animals need a microbiome. FEMS Microbiol. Lett. 366(10), fnz117. doi: 10.1093/femsle/fnz117 PubMed DOI
Krawczyk A. I., Röttjers L., Fonville M., Takumi K., Takken W., Faust K., et al. . (2022). Quantitative microbial population study reveals geographical differences in bacterial symbionts of Ixodes ricinus . Microbiome 10, 120. doi: 10.1186/s40168-022-01276-1 PubMed DOI PMC
Kröber T., Guerin P. M. (2007). In vitro feeding assays for hard ticks. Trends Parasitol. 23, 445–449. doi: 10.1016/j.pt.2007.07.010 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI
Lo N., Beninati T., Sassera D., Bouman E. A. P., Santagati S., Gern L., et al. . (2006). Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus . Environ. Microbiol. 8, 1280–1287. doi: 10.1111/j.1462-2920.2006.01024.x PubMed DOI
Moullan N., Mouchiroud L., Wang X., Ryu D., Williams E. G., Mottis A., et al. . (2015). Tetracyclines disturb mitochondrial function across eukaryotic models: A call for caution in biomedical research. Cell Rep. 10, 1681–1691. doi: 10.1016/j.celrep.2015.02.034 PubMed DOI PMC
Mushegian A. A., Walser J.-C., Sullam K. E., Ebert D., Hoye B. (2018). The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. J. Anim. Ecol. 87, 400–413. doi: 10.1111/1365-2656.12709 PubMed DOI
Narasimhan S., Rajeevan N., Liu L., Zhao Y. O., Heisig J., Pan J., et al. . (2014). Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71. doi: 10.1016/j.chom.2013.12.001 PubMed DOI PMC
Ninio C., Plantard O., Serra V., Pollera C., Ferrari N., Cafiso A., et al. . (2015). Antibiotic treatment of the hard tick Ixodes ricinus: Influence on Midichloria mitochondrii load following blood meal. Ticks Tick-borne Dis. 6, 653–657. doi: 10.1016/j.ttbdis.2015.05.011 PubMed DOI
Oliver J. D., Price L. D., Burkhardt N. Y., Heu C. C., Khoo B. S., Thorpe C. J., et al. . (2021). Growth dynamics and antibiotic elimination of symbiotic Rickettsia buchneri in the tick Ixodes scapularis (Acari: Ixodidae). Appl. Environ. Microbiol. 87, e01672-20. doi: 10.1128/aem.01672-20 PubMed DOI PMC
Olivieri E., Epis S., Castelli M., Varotto Boccazzi I., Romeo C., Desirò A., et al. . (2019). Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus . Ticks Tick-borne Dis. 10, 1070–1077. doi: 10.1016/j.ttbdis.2019.05.019 PubMed DOI
Perner J., Kotál J., Hatalová T., Urbanová V., Bartošová-Sojková P., Brophy P. M., et al. . (2018). Inducible glutathione s-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem. Mol. Biol. 95, 44–54. doi: 10.1016/j.ibmb.2018.02.002 PubMed DOI
Richter U., Ng K. Y., Suomi F., Marttinen P., Turunen T., Jackson C., et al. . (2019). Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Sci. Alliance 2, e201800219. doi: 10.26508/lsa.201800219 PubMed DOI PMC
Romoli O., Schönbeck J. C., Hapfelmeier S., Gendrin M. (2021). Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat Commun 12, 942. doi: 10.1038/s41467-021-21195-3 PubMed DOI PMC
Ross B. D., Hayes B., Radey M. C., Lee X., Josek T., Bjork J., et al. . (2018). Ixodes scapularis does not harbor a stable midgut microbiome. ISME J. 12, 2596–2607. doi: 10.1038/s41396-018-0161-6 PubMed DOI PMC
Sacchi L., Bigliardi E., Corona S., Beninati T., Lo N., Franceschi A. (2004). A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus . Tissue Cell 36, 43–53. doi: 10.1016/j.tice.2003.08.004 PubMed DOI
Sassera D., Beninati T., Bandi C., Bouman E. A. P., Sacchi L., Fabbi M., et al. . (2006). ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int. J. Systemat. Evolution. Microbiol. 56, 2535–2540. doi: 10.1099/ijs.0.64386-0 PubMed DOI
Sassera D., Lo N., Bouman E. A. P., Epis S., Mortarino M., Bandi C. (2008). “Candidatus Midichloria” endosymbionts bloom after the blood meal of the host, the hard tick Ixodes ricinus . Appl. Environ. Microbiol. 74, 6138–6140. doi: 10.1128/aem.00248-08 PubMed DOI PMC
Song X., Zhong Z., Gao L., Weiss B. L., Wang J. (2022). Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol. 38, 697–708. doi: 10.1016/j.pt.2022.05.002 PubMed DOI
Steven B., Hyde J., Lareau J. C., Brackney D. E. (2021). The axenic and gnotobiotic mosquito: Emerging models for microbiome host interactions. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.714222 PubMed DOI PMC
Zhang C.-M., Li N.-X., Zhang T.-T., Qiu Z.-X., Li Y., Li L.-W., et al. . (2017). Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis . Exp. Appl. Acarol. 73, 429–438. doi: 10.1007/s10493-017-0194-y PubMed DOI
Zhong J., Jasinskas A., Barbour A. G. (2007). Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PloS One 2, e405. doi: 10.1371/journal.pone.0000405 PubMed DOI PMC
Zhong Z., Zhong T., Peng Y., Zhou X., Wang Z., Tang H., et al. . (2021). Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe 29, 1545–1557.e1544. doi: 10.1016/j.chom.2021.08.011 PubMed DOI