decoupleR: ensemble of computational methods to infer biological activities from omics data

. 2022 ; 2 (1) : vbac016. [epub] 20220308

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36699385

SUMMARY: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computational methods to extract these activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions, which are not present in other frameworks. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across top methods perform better than other methods at predicting perturbed regulators. AVAILABILITY AND IMPLEMENTATION: decoupleR's open-source code is available in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html) for R and in GitHub (https://github.com/saezlab/decoupler-py) for Python. The code to reproduce the results is in GitHub (https://github.com/saezlab/decoupleR_manuscript) and the data in Zenodo (https://zenodo.org/record/5645208). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.

Zobrazit více v PubMed

Aibar S. et al. (2017) Scenic: single-cell regulatory network inference and clustering. Nat. Methods, 14, 1083–1086. PubMed PMC

Alhamdoosh M. et al. (2017) Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics, 33, 414–424. PubMed PMC

Alvarez M.J. et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet., 48, 838–847. PubMed PMC

Dugourd A., Saez-Rodriguez J. (2019) Footprint-based functional analysis of multiomic data. Curr. Opin. Syst. Biol., 15, 82–90. PubMed PMC

Garcia-Alonso L. et al. (2019) Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res., 29, 1363–1375. PubMed PMC

Geistlinger L. et al. (2016) Bioconductor’s enrichment browser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinformatics, 17, 45. PubMed PMC

Hänzelmann S. et al. (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7. PubMed PMC

Hernandez-Armenta C. et al. (2017) Benchmarking substrate-based kinase activity inference using phosphoproteomic data. Bioinformatics, 33, 1845–1851. PubMed PMC

Holland C.H. et al. (2020) Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol., 21, 36. PubMed PMC

Korotkevich G. et al. (2021) Fast gene set enrichment analysis. bioRxiv. DOI: https://doi.org/10.1101/060012.

Teschendorff A.E., Wang N. (2020) Improved detection of tumor suppressor events in single-cell RNA-seq data. NPJ Genomic Med., 5, 43. PubMed PMC

Türei D. et al. (2021) Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol., 17, e9923. PubMed PMC

Väremo L. et al. (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res., 41, 4378–4391. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unveiling the role of sex in the metabolism of indoxyl sulfate and apixaban

. 2025 Feb 19 ; 15 (1) : 6075. [epub] 20250219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...