Unveiling the role of sex in the metabolism of indoxyl sulfate and apixaban

. 2025 Feb 19 ; 15 (1) : 6075. [epub] 20250219

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39972038

Grantová podpora
860329 Marie-Curie ITN "STRATEGY-CKD European Union's Horizon 2020 research and innovation program
0000432 EU Horizon 2020 program Epic-XS

Odkazy

PubMed 39972038
PubMed Central PMC11839926
DOI 10.1038/s41598-025-90405-5
PII: 10.1038/s41598-025-90405-5
Knihovny.cz E-zdroje

Chronic Kidney Disease (CKD) is associated with heightened risk of thrombosis. Prescription of anticoagulants is key to manage it; however, CKD patients have shown an increased risk of bleeding under anticoagulation therapy compared to non-CKD patients. We hypothesized that the sex could modify the metabolism of indoxyl sulfate (IS), a uremic toxin and Apixaban. Our intoxication model shows that higher doses of IS and apixaban accumulate in the plasma of female mice because of expression differences in efflux transporters and cytochromes in the liver, ileum and kidneys, when compared to males. Furthermore, we found that accumulation of apixaban in females contributes to increased bleeding. Transcriptional analysis of liver samples revealed elevated Sult1a1 but reduced Abcg2 and Cyp3a11 in female mice, while in the kidneys the expression rates of Oat1 and Oat3 were respectively lower and higher than those observed in males, potentially affecting drug clearance. Whole proteomics liver analysis confirmed the previous transcriptional results at the protein level and revealed that sex had a major influence in regulating both coagulation and drug metabolism pathways. Thus, our findings underline the need for inclusive clinical and preclinical trials to accurately reflect sex-specific metabolic variations, and to consider CKD-specific changes to optimize dosing, minimize side effects, and improve patient outcomes.

Zobrazit více v PubMed

Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl.12(1), 7–11. 10.1016/j.kisu.2021.11.003 (2022). PubMed PMC

Sundström, J. et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: the CaReMe CKD study. Lancet Reg. Health Eur.20, 89. 10.1016/j.lanepe.2022.100438 (2022). PubMed PMC

Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol.30(1), 137–146. 10.1681/ASN.2018030296 (2019). PubMed PMC

Balafa, O. et al. Sex disparities in mortality and cardiovascular outcomes in chronic kidney disease. Clin. Kidney J.17(3), sfae044. 10.1093/ckj/sfae044 (2024). PubMed PMC

MacRae, C., Mercer, S. W., Guthrie, B. & Henderson, D. Comorbidity in chronic kidney disease: a large cross-sectional study of prevalence in Scottish primary care. Br. J. Gen. Pract.71(704), e243–e249. 10.3399/bjgp20X714125 (2021). PubMed PMC

Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease. Circulation143(11), 1157–1172. 10.1161/CIRCULATIONAHA.120.050686 (2021). PubMed PMC

Sallée, M. et al. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins6(3), 934–949. 10.3390/toxins6030934 (2014). PubMed PMC

Nunns, G. R. et al. The hypercoagulability paradox of chronic kidney disease: the role of fibrinogen. Am. J. Surg.214(6), 1215–1218. 10.1016/j.amjsurg.2017.08.039 (2017). PubMed PMC

Lutz, J., Menke, J., Sollinger, D., Schinzel, H. & Thürmel, K. Haemostasis in chronic kidney disease. Nephrol. Dial. Transplant.29(1), 29–40. 10.1093/ndt/gft209 (2014). PubMed

Addi, T., Dou, L. & Burtey, S. Tryptophan-derived uremic toxins and thrombosis in chronic kidney disease. Toxins10(10), 10. 10.3390/toxins10100412 (2018). PubMed PMC

Gadde, S. et al. Atrial fibrillation in chronic kidney disease: an overview. Cureus14(8), e27753. 10.7759/cureus.27753 (2023). PubMed PMC

Folsom, A. R. et al. Chronic kidney disease and venous thromboembolism: a prospective study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.25(10), 3296–3301. 10.1093/ndt/gfq179 (2010). PubMed PMC

Yu, W. Y. H. et al. Warfarin-associated nonuremic calciphylaxis. JAMA Dermatol.153(3), 309–314. 10.1001/jamadermatol.2016.4821 (2017). PubMed PMC

Hammett, C. et al. Oral anticoagulant use in patients with atrial fibrillation and chronic kidney disease: a review of the evidence with recommendations for Australian Clinical Practice. Heart Lung Circ.31(12), 1604–1611. 10.1016/j.hlc.2022.09.003 (2022). PubMed

Wetmore, J. B. et al. Apixaban dosing patterns Versus Warfarin in patients with Nonvalvular Atrial Fibrillation receiving Dialysis: a retrospective cohort study. Am. J. Kidney Dis.10.1053/j.ajkd.2022.03.007 (2022). PubMed

Byon, W., Garonzik, S., Boyd, R. A. & Frost, C. E. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin. Pharmacokinet.58(10), 1265–1279. 10.1007/s40262-019-00775-z (2019). PubMed PMC

Fatima, H. et al. Safety and efficacy of apixaban vs warfarin in patients with stage 4 and 5 chronic kidney disease: a systematic review. Cureus J. Med. Sci.14, 10. 10.7759/cureus.30230 (2022). PubMed PMC

Parker, K. et al. A systematic review of the efficacy and safety of anticoagulants in advanced chronic kidney disease. J. Nephrol.35(8), 2015–2033. 10.1007/s40620-022-01413-x (2022). PubMed PMC

Vondracek, S. F., Teitelbaum, I. & Kiser, T. H. Principles of kidney pharmacotherapy for the nephrologist: core curriculum 2021. Am. J. Kidney Dis.78(3), 442–458. 10.1053/j.ajkd.2021.02.342 (2021). PubMed

Santana Machado, T., Cerini, C. & Burtey, S. Emerging roles of aryl hydrocarbon receptors in the altered clearance of drugs during chronic kidney disease. Toxins11(4), E209. 10.3390/toxins11040209 (2019). PubMed PMC

Fujii-Kuriyama, Y. & Mimura, J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem. Biophys. Res. Commun.338(1), 311–317. 10.1016/j.bbrc.2005.08.162 (2005). PubMed

Gondouin, B. et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int.84(4), 733–744. 10.1038/ki.2013.133 (2013). PubMed

Banoglu, E., Jha, G. G. & King, R. S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet.26(4), 235–240 (2001). PubMed PMC

Banoglu, E. & King, R. S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet.27(2), 135–140. 10.1007/BF03190428 (2002). PubMed PMC

Ma, Q., Zhang, X. & Qu, Y. Biodegradation and biotransformation of indole: advances and perspectives. Front. Microbiol.9,12. https://www.frontiersin.org/articles/, 10.3389/fmicb.2018.02625 (2018). PubMed PMC

Niwa, T. Indoxyl sulfate is a nephro-vascular toxin. J. Ren. Nutr.20(5), S2–S6. 10.1053/j.jrn.2010.05.002 (2010). PubMed

Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M. & Pawlak, D. Indoxyl sulfate—the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol.18(1), 35. 10.1186/s12882-017-0457-1 (2017). PubMed PMC

Lano, G., Burtey, S. & Sallée, M. Indoxyl sulfate, a uremic endotheliotoxin. Toxins12(4), 4. 10.3390/toxins12040229 (2020). PubMed PMC

Santana Machado, T. et al. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J. Am. Soc. Nephrol. JASN29(3), 906–918. 10.1681/ASN.2017030361 (2018). PubMed PMC

Dreisbach, A. W. & Lertora, J. J. The effect of chronic renal failure on drug metabolism and transport. Expert Opin. Drug Metab. Toxicol.4(8), 1065–1074. 10.1517/17425255.4.8.1065 (2008). PubMed PMC

Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C. & Bradfield, C. A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci.93(13), 6731–6736. 10.1073/pnas.93.13.6731 (1996). PubMed PMC

du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol.18(7), e3000411. 10.1371/journal.pbio.3000411 (2020). PubMed PMC

Calaf, R. et al. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci.879(23), 2281–2286. 10.1016/j.jchromb.2011.06.014 (2011). PubMed

‘Willekens et al. A universal anti-Xa assay for rivaroxaban, apixaba.pdf. (2021, accessed 24 Jun 2024). https://zlmsg.ch/wp-content/uploads/2021/05/2021-Br-J-Haematol_Willekens.pdf.

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods San Diego Calif25(4), 402–408. 10.1006/meth.2001.1262 (2001). PubMed

Smadja, D. M. et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J. Cell. Mol. Med.11(5), 1149–1161. 10.1111/j.1582-4934.2007.00090.x (2007). PubMed PMC

Türei, D., Korcsmáros, T. & Saez-Rodriguez, J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods13(12), 966–967. 10.1038/nmeth.4077 (2016). PubMed

Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform.19(1), 1–11. 10.1093/bib/bbw095 (2016). PubMed PMC

Phipson, B. et al. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat.10(2), 946–963. 10.1214/16-AOAS920 (2016). PubMed PMC

Badia-i-Mompel, P. et al. DecoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinforma Adv.2(1), vbac016. 10.1093/bioadv/vbac016 (2022). PubMed PMC

Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst.1(6), 417–425. 10.1016/j.cels.2015.12.004 (2015). PubMed PMC

Jansen, J. et al. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proc. Natl. Acad. Sci.116(32), 16105–16110. 10.1073/pnas.1821809116 (2019). PubMed PMC

König, C. et al. Thirty mouse strain survey of voluntary physical activity and energy expenditure: influence of strain, sex and day–night variation. Front. Neurosci.14, 896. 10.3389/fnins.2020.00531 (2020). PubMed PMC

Hylek, E. M. Apixaban for end-stage kidney disease. Circulation138(15), 1534–1536. 10.1161/CIRCULATIONAHA.118.036449 (2018). PubMed

Zhang, D. et al. Comparative metabolism of 14 C-labeled apixaban in mice, rats, rabbits, dogs, and humans. Drug Metab. Dispos. Biol. Fate Chem.37(8), 1738–1748. 10.1124/dmd.108.025981 (2009). PubMed

Bushi, D. et al. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J. Neurosci. Res.96(8), 1406–1411. 10.1002/jnr.24253 (2018). PubMed

Beery, A. K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci.23, 143–149. 10.1016/j.cobeha.2018.06.016 (2018). PubMed PMC

Bierer, B. E., Meloney, L. G., Ahmed, H. R. & White, S. A. Advancing the inclusion of underrepresented women in clinical research. Cell. Rep. Med.3(4), 100553. 10.1016/j.xcrm.2022.100553 (2022). PubMed PMC

Alahamadi, Z. et al. Race, sex, and kidney disease trial participation. Kidney Med.5, 3. 10.1016/j.xkme.2022.100594 (2023). PubMed PMC

Heerspink Hiddo, J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med.383(15), 1436–1446 10.1056/NEJMoa2024816 (2020). PubMed

Vinson, A. J., Collister, D., Ahmed, S. & Tennankore, K. Underrepresentation of women in recent landmark kidney trials: the gender gap prevails. Kidney Int. Rep.7(11), 2526–2529. 10.1016/j.ekir.2022.08.022 (2022). PubMed PMC

Granger Christopher, B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med.365(11), 981–992. 10.1056/NEJMoa1107039 (2011). PubMed

Santema, B. T. et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study’, The Lancet394(10205), 1254–1263. 10.1016/S0140-6736(19)31792-1 (2019). PubMed

Nolin, T. D. A synopsis of clinical pharmacokinetic alterations in advanced CKD. Semin. Dial.28(4), 325–329. 10.1111/sdi.12374 (2015). PubMed PMC

Jalal, D., Chonchol, M. & Targher, G. Disorders of hemostasis associated with chronic kidney disease. Semin. Thromb. Hemost.36(1), 034–040. 10.1055/s-0030-1248722 (2010). PubMed

Dou, L. et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int.93(4), 986–999. 10.1016/j.kint.2017.11.010 (2018). PubMed

Frost, C. E. et al. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin. Pharmacokinet.54(6), 651–662. 10.1007/s40262-014-0228-0 (2015). PubMed PMC

Zhang, D. et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab. Dispos. Biol. Fate Chem.41(4), 827–835. 10.1124/dmd.112.050260 (2013). PubMed

Kim, H. et al. ABCG2 gene polymorphisms may affect the bleeding risk in patients on apixaban and rivaroxaban. Drug Des. Devel. Ther.17, 2513–2522. 10.2147/DDDT.S417096 (2023). PubMed PMC

Attelind, S. et al. Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front. Genet.13, 89. 10.3389/fgene.2022.982955 (2022). PubMed PMC

Faber, M. S., Jetter, A. & Fuhr, U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic. Clin. Pharmacol. Toxicol.97(3), 125–134. 10.1111/j.1742-7843.2005.pto_973160.x (2005). PubMed

Krekels, E. H. J., Rower, J. E., Constance, J. E., Knibbe, C. A. J. & Sherwin, C. M. T. Chapter 8—hepatic drug metabolism in Pediatric patients. In Drug Metabolism in Diseases (ed. Xie, W.) 181–206 (Academic, 2017). 10.1016/B978-0-12-802949-7.00008-0.

Sindhu, R. K. & Vaziri, N. D. Upregulation of cytochrome P450 1A2 in chronic renal failure: does oxidized tryptophan play a role? Adv. Exp. Med. Biol.527, 401–407. 10.1007/978-1-4615-0135-0_47 (2003). PubMed

Xiong, L. et al. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BioRxiv Prepr. Serv. Biol.2023, 539585. 10.1101/2023.05.06.539585 (2023).

Breljak, D., Brzica, H., Sweet, D. H., Anzai, N. & Sabolic, I. Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am J. Physiol. Ren. Physiol.304(8), F1114–F1126. 10.1152/ajprenal.00201.2012 (2013). PubMed PMC

Sakurai, Y. et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm. Res.21(1), 61–67. 10.1023/B:PHAM.0000012153.71993.cb (2004). PubMed

Zhang, J., Wang, H., Fan, Y., Yu, Z. & You, G. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther.217, 107647. 10.1016/j.pharmthera.2020.107647 (2021). PubMed PMC

Deguchi, T. et al. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int.65(1), 162–174. 10.1111/j.1523-1755.2004.00354.x (2004). PubMed

Ravid, J. D. & Chitalia, V. C. Molecular mechanisms underlying the cardiovascular toxicity of specific uremic solutes. Cells9(9), 2020. 10.3390/cells9092024 (2024) PubMed PMC

Lee, P. & Wu, X. Modifications of human serum albumin and their binding effect. Curr. Pharm. Des.21(14), 1862–1865 (2015). PubMed PMC

Yu, S. et al. Interaction of human serum albumin with uremic toxins: a thermodynamic study. RSC Adv.7, 27913–27922. 10.1039/C7RA02838E (2017).

Wang, Q. et al. Determination of potential main sites of apixaban binding in human serum albumin by combined spectroscopic and docking investigations. RSC Adv.5(99), 81696–81706. 10.1039/C5RA15430H (2015).

Devine, E., Krieter, D. H., Rüth, M., Jankovski, J. & Lemke, H. D. Binding affinity and capacity for the uremic toxin indoxyl sulfate. Toxins6(2), 416–429. 10.3390/toxins6020416 (2014). PubMed PMC

Sakai, T. et al. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm. Res.18(4), 520–524. 10.1023/A:1011014629551 (2001). PubMed

Su, L. et al. Abcb1a and Abcb1b genes function differentially in blood–testis barrier dynamics in the rat. Cell. Death Dis.8(9), 9. 10.1038/cddis.2017.435 (2017). PubMed PMC

Horsey, A. J., Cox, M. H., Sarwat, S. & Kerr, I. D. The multidrug transporter ABCG2: still more questions than answers. Biochem. Soc. Trans.44(3), 824–830. 10.1042/BST20160014 (2016). PubMed PMC

Grishanova, A. Y. & Perepechaeva, M. L. Aryl hydrocarbon receptor in oxidative stress as a double agent and its biological and therapeutic significance. Int. J. Mol. Sci.23(12), 12. 10.3390/ijms23126719 (2022). PubMed PMC

Wang, L. et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab. Dispos. Biol. Fate Chem.38(3), 448–458. 10.1124/dmd.109.029694 (2010). PubMed

Lu, C. L. et al. Indoxyl-sulfate-induced redox imbalance in chronic kidney disease. Antioxidants10(6), 936. 10.3390/antiox10060936 (2021). PubMed PMC

Sekine, T., Miyazaki, H. & Endou, H. Molecular physiology of renal organic anion transporters. Am. J. Physiol. -Ren. Physiol.290(2), F251–F261. 10.1152/ajprenal.00439.2004 (2006). PubMed

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552. 10.1093/nar/gkab1038 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...