Unveiling the role of sex in the metabolism of indoxyl sulfate and apixaban
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
860329 Marie-Curie ITN "STRATEGY-CKD
European Union's Horizon 2020 research and innovation program
0000432
EU Horizon 2020 program Epic-XS
PubMed
39972038
PubMed Central
PMC11839926
DOI
10.1038/s41598-025-90405-5
PII: 10.1038/s41598-025-90405-5
Knihovny.cz E-zdroje
- MeSH
- antikoagulancia MeSH
- chronická renální insuficience metabolismus MeSH
- indican * metabolismus MeSH
- játra metabolismus MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- pyrazoly * metabolismus farmakokinetika MeSH
- pyridony * metabolismus farmakokinetika MeSH
- sexuální faktory MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antikoagulancia MeSH
- apixaban MeSH Prohlížeč
- indican * MeSH
- pyrazoly * MeSH
- pyridony * MeSH
Chronic Kidney Disease (CKD) is associated with heightened risk of thrombosis. Prescription of anticoagulants is key to manage it; however, CKD patients have shown an increased risk of bleeding under anticoagulation therapy compared to non-CKD patients. We hypothesized that the sex could modify the metabolism of indoxyl sulfate (IS), a uremic toxin and Apixaban. Our intoxication model shows that higher doses of IS and apixaban accumulate in the plasma of female mice because of expression differences in efflux transporters and cytochromes in the liver, ileum and kidneys, when compared to males. Furthermore, we found that accumulation of apixaban in females contributes to increased bleeding. Transcriptional analysis of liver samples revealed elevated Sult1a1 but reduced Abcg2 and Cyp3a11 in female mice, while in the kidneys the expression rates of Oat1 and Oat3 were respectively lower and higher than those observed in males, potentially affecting drug clearance. Whole proteomics liver analysis confirmed the previous transcriptional results at the protein level and revealed that sex had a major influence in regulating both coagulation and drug metabolism pathways. Thus, our findings underline the need for inclusive clinical and preclinical trials to accurately reflect sex-specific metabolic variations, and to consider CKD-specific changes to optimize dosing, minimize side effects, and improve patient outcomes.
Central European Institute of Technology Masaryk University Brno Czech Republic
Centre de Néphrologie Medipole Saint Roch Cabestany France
European Molecular Biology Laboratory European Bioinformatics Institute Hinxton Cambridgeshire UK
Faculté de pharmacie Aix Marseille Univ INSERM INRAE C2VN Bd Jean Moulin Marseille 13005 France
National Centre for Biomolecular Research Masaryk University Brno Czech Republic
School of Biodiversity One Health and Veterinary Medicine University of Glasgow Glasgow UK
Zobrazit více v PubMed
Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl.12(1), 7–11. 10.1016/j.kisu.2021.11.003 (2022). PubMed PMC
Sundström, J. et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: the CaReMe CKD study. Lancet Reg. Health Eur.20, 89. 10.1016/j.lanepe.2022.100438 (2022). PubMed PMC
Ricardo, A. C. et al. Sex-related disparities in CKD progression. J. Am. Soc. Nephrol.30(1), 137–146. 10.1681/ASN.2018030296 (2019). PubMed PMC
Balafa, O. et al. Sex disparities in mortality and cardiovascular outcomes in chronic kidney disease. Clin. Kidney J.17(3), sfae044. 10.1093/ckj/sfae044 (2024). PubMed PMC
MacRae, C., Mercer, S. W., Guthrie, B. & Henderson, D. Comorbidity in chronic kidney disease: a large cross-sectional study of prevalence in Scottish primary care. Br. J. Gen. Pract.71(704), e243–e249. 10.3399/bjgp20X714125 (2021). PubMed PMC
Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease. Circulation143(11), 1157–1172. 10.1161/CIRCULATIONAHA.120.050686 (2021). PubMed PMC
Sallée, M. et al. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins6(3), 934–949. 10.3390/toxins6030934 (2014). PubMed PMC
Nunns, G. R. et al. The hypercoagulability paradox of chronic kidney disease: the role of fibrinogen. Am. J. Surg.214(6), 1215–1218. 10.1016/j.amjsurg.2017.08.039 (2017). PubMed PMC
Lutz, J., Menke, J., Sollinger, D., Schinzel, H. & Thürmel, K. Haemostasis in chronic kidney disease. Nephrol. Dial. Transplant.29(1), 29–40. 10.1093/ndt/gft209 (2014). PubMed
Addi, T., Dou, L. & Burtey, S. Tryptophan-derived uremic toxins and thrombosis in chronic kidney disease. Toxins10(10), 10. 10.3390/toxins10100412 (2018). PubMed PMC
Gadde, S. et al. Atrial fibrillation in chronic kidney disease: an overview. Cureus14(8), e27753. 10.7759/cureus.27753 (2023). PubMed PMC
Folsom, A. R. et al. Chronic kidney disease and venous thromboembolism: a prospective study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.25(10), 3296–3301. 10.1093/ndt/gfq179 (2010). PubMed PMC
Yu, W. Y. H. et al. Warfarin-associated nonuremic calciphylaxis. JAMA Dermatol.153(3), 309–314. 10.1001/jamadermatol.2016.4821 (2017). PubMed PMC
Hammett, C. et al. Oral anticoagulant use in patients with atrial fibrillation and chronic kidney disease: a review of the evidence with recommendations for Australian Clinical Practice. Heart Lung Circ.31(12), 1604–1611. 10.1016/j.hlc.2022.09.003 (2022). PubMed
Wetmore, J. B. et al. Apixaban dosing patterns Versus Warfarin in patients with Nonvalvular Atrial Fibrillation receiving Dialysis: a retrospective cohort study. Am. J. Kidney Dis.10.1053/j.ajkd.2022.03.007 (2022). PubMed
Byon, W., Garonzik, S., Boyd, R. A. & Frost, C. E. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin. Pharmacokinet.58(10), 1265–1279. 10.1007/s40262-019-00775-z (2019). PubMed PMC
Fatima, H. et al. Safety and efficacy of apixaban vs warfarin in patients with stage 4 and 5 chronic kidney disease: a systematic review. Cureus J. Med. Sci.14, 10. 10.7759/cureus.30230 (2022). PubMed PMC
Parker, K. et al. A systematic review of the efficacy and safety of anticoagulants in advanced chronic kidney disease. J. Nephrol.35(8), 2015–2033. 10.1007/s40620-022-01413-x (2022). PubMed PMC
Vondracek, S. F., Teitelbaum, I. & Kiser, T. H. Principles of kidney pharmacotherapy for the nephrologist: core curriculum 2021. Am. J. Kidney Dis.78(3), 442–458. 10.1053/j.ajkd.2021.02.342 (2021). PubMed
Santana Machado, T., Cerini, C. & Burtey, S. Emerging roles of aryl hydrocarbon receptors in the altered clearance of drugs during chronic kidney disease. Toxins11(4), E209. 10.3390/toxins11040209 (2019). PubMed PMC
Fujii-Kuriyama, Y. & Mimura, J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem. Biophys. Res. Commun.338(1), 311–317. 10.1016/j.bbrc.2005.08.162 (2005). PubMed
Gondouin, B. et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int.84(4), 733–744. 10.1038/ki.2013.133 (2013). PubMed
Banoglu, E., Jha, G. G. & King, R. S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet.26(4), 235–240 (2001). PubMed PMC
Banoglu, E. & King, R. S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet.27(2), 135–140. 10.1007/BF03190428 (2002). PubMed PMC
Ma, Q., Zhang, X. & Qu, Y. Biodegradation and biotransformation of indole: advances and perspectives. Front. Microbiol.9,12. https://www.frontiersin.org/articles/, 10.3389/fmicb.2018.02625 (2018). PubMed PMC
Niwa, T. Indoxyl sulfate is a nephro-vascular toxin. J. Ren. Nutr.20(5), S2–S6. 10.1053/j.jrn.2010.05.002 (2010). PubMed
Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M. & Pawlak, D. Indoxyl sulfate—the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol.18(1), 35. 10.1186/s12882-017-0457-1 (2017). PubMed PMC
Lano, G., Burtey, S. & Sallée, M. Indoxyl sulfate, a uremic endotheliotoxin. Toxins12(4), 4. 10.3390/toxins12040229 (2020). PubMed PMC
Santana Machado, T. et al. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J. Am. Soc. Nephrol. JASN29(3), 906–918. 10.1681/ASN.2017030361 (2018). PubMed PMC
Dreisbach, A. W. & Lertora, J. J. The effect of chronic renal failure on drug metabolism and transport. Expert Opin. Drug Metab. Toxicol.4(8), 1065–1074. 10.1517/17425255.4.8.1065 (2008). PubMed PMC
Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C. & Bradfield, C. A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci.93(13), 6731–6736. 10.1073/pnas.93.13.6731 (1996). PubMed PMC
du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol.18(7), e3000411. 10.1371/journal.pbio.3000411 (2020). PubMed PMC
Calaf, R. et al. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci.879(23), 2281–2286. 10.1016/j.jchromb.2011.06.014 (2011). PubMed
‘Willekens et al. A universal anti-Xa assay for rivaroxaban, apixaba.pdf. (2021, accessed 24 Jun 2024). https://zlmsg.ch/wp-content/uploads/2021/05/2021-Br-J-Haematol_Willekens.pdf.
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods San Diego Calif25(4), 402–408. 10.1006/meth.2001.1262 (2001). PubMed
Smadja, D. M. et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J. Cell. Mol. Med.11(5), 1149–1161. 10.1111/j.1582-4934.2007.00090.x (2007). PubMed PMC
Türei, D., Korcsmáros, T. & Saez-Rodriguez, J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods13(12), 966–967. 10.1038/nmeth.4077 (2016). PubMed
Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform.19(1), 1–11. 10.1093/bib/bbw095 (2016). PubMed PMC
Phipson, B. et al. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat.10(2), 946–963. 10.1214/16-AOAS920 (2016). PubMed PMC
Badia-i-Mompel, P. et al. DecoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinforma Adv.2(1), vbac016. 10.1093/bioadv/vbac016 (2022). PubMed PMC
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst.1(6), 417–425. 10.1016/j.cels.2015.12.004 (2015). PubMed PMC
Jansen, J. et al. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proc. Natl. Acad. Sci.116(32), 16105–16110. 10.1073/pnas.1821809116 (2019). PubMed PMC
König, C. et al. Thirty mouse strain survey of voluntary physical activity and energy expenditure: influence of strain, sex and day–night variation. Front. Neurosci.14, 896. 10.3389/fnins.2020.00531 (2020). PubMed PMC
Hylek, E. M. Apixaban for end-stage kidney disease. Circulation138(15), 1534–1536. 10.1161/CIRCULATIONAHA.118.036449 (2018). PubMed
Zhang, D. et al. Comparative metabolism of 14 C-labeled apixaban in mice, rats, rabbits, dogs, and humans. Drug Metab. Dispos. Biol. Fate Chem.37(8), 1738–1748. 10.1124/dmd.108.025981 (2009). PubMed
Bushi, D. et al. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J. Neurosci. Res.96(8), 1406–1411. 10.1002/jnr.24253 (2018). PubMed
Beery, A. K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci.23, 143–149. 10.1016/j.cobeha.2018.06.016 (2018). PubMed PMC
Bierer, B. E., Meloney, L. G., Ahmed, H. R. & White, S. A. Advancing the inclusion of underrepresented women in clinical research. Cell. Rep. Med.3(4), 100553. 10.1016/j.xcrm.2022.100553 (2022). PubMed PMC
Alahamadi, Z. et al. Race, sex, and kidney disease trial participation. Kidney Med.5, 3. 10.1016/j.xkme.2022.100594 (2023). PubMed PMC
Heerspink Hiddo, J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med.383(15), 1436–1446 10.1056/NEJMoa2024816 (2020). PubMed
Vinson, A. J., Collister, D., Ahmed, S. & Tennankore, K. Underrepresentation of women in recent landmark kidney trials: the gender gap prevails. Kidney Int. Rep.7(11), 2526–2529. 10.1016/j.ekir.2022.08.022 (2022). PubMed PMC
Granger Christopher, B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med.365(11), 981–992. 10.1056/NEJMoa1107039 (2011). PubMed
Santema, B. T. et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study’, The Lancet394(10205), 1254–1263. 10.1016/S0140-6736(19)31792-1 (2019). PubMed
Nolin, T. D. A synopsis of clinical pharmacokinetic alterations in advanced CKD. Semin. Dial.28(4), 325–329. 10.1111/sdi.12374 (2015). PubMed PMC
Jalal, D., Chonchol, M. & Targher, G. Disorders of hemostasis associated with chronic kidney disease. Semin. Thromb. Hemost.36(1), 034–040. 10.1055/s-0030-1248722 (2010). PubMed
Dou, L. et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int.93(4), 986–999. 10.1016/j.kint.2017.11.010 (2018). PubMed
Frost, C. E. et al. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin. Pharmacokinet.54(6), 651–662. 10.1007/s40262-014-0228-0 (2015). PubMed PMC
Zhang, D. et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab. Dispos. Biol. Fate Chem.41(4), 827–835. 10.1124/dmd.112.050260 (2013). PubMed
Kim, H. et al. ABCG2 gene polymorphisms may affect the bleeding risk in patients on apixaban and rivaroxaban. Drug Des. Devel. Ther.17, 2513–2522. 10.2147/DDDT.S417096 (2023). PubMed PMC
Attelind, S. et al. Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front. Genet.13, 89. 10.3389/fgene.2022.982955 (2022). PubMed PMC
Faber, M. S., Jetter, A. & Fuhr, U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic. Clin. Pharmacol. Toxicol.97(3), 125–134. 10.1111/j.1742-7843.2005.pto_973160.x (2005). PubMed
Krekels, E. H. J., Rower, J. E., Constance, J. E., Knibbe, C. A. J. & Sherwin, C. M. T. Chapter 8—hepatic drug metabolism in Pediatric patients. In Drug Metabolism in Diseases (ed. Xie, W.) 181–206 (Academic, 2017). 10.1016/B978-0-12-802949-7.00008-0.
Sindhu, R. K. & Vaziri, N. D. Upregulation of cytochrome P450 1A2 in chronic renal failure: does oxidized tryptophan play a role? Adv. Exp. Med. Biol.527, 401–407. 10.1007/978-1-4615-0135-0_47 (2003). PubMed
Xiong, L. et al. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BioRxiv Prepr. Serv. Biol.2023, 539585. 10.1101/2023.05.06.539585 (2023).
Breljak, D., Brzica, H., Sweet, D. H., Anzai, N. & Sabolic, I. Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. Am J. Physiol. Ren. Physiol.304(8), F1114–F1126. 10.1152/ajprenal.00201.2012 (2013). PubMed PMC
Sakurai, Y. et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm. Res.21(1), 61–67. 10.1023/B:PHAM.0000012153.71993.cb (2004). PubMed
Zhang, J., Wang, H., Fan, Y., Yu, Z. & You, G. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther.217, 107647. 10.1016/j.pharmthera.2020.107647 (2021). PubMed PMC
Deguchi, T. et al. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int.65(1), 162–174. 10.1111/j.1523-1755.2004.00354.x (2004). PubMed
Ravid, J. D. & Chitalia, V. C. Molecular mechanisms underlying the cardiovascular toxicity of specific uremic solutes. Cells9(9), 2020. 10.3390/cells9092024 (2024) PubMed PMC
Lee, P. & Wu, X. Modifications of human serum albumin and their binding effect. Curr. Pharm. Des.21(14), 1862–1865 (2015). PubMed PMC
Yu, S. et al. Interaction of human serum albumin with uremic toxins: a thermodynamic study. RSC Adv.7, 27913–27922. 10.1039/C7RA02838E (2017).
Wang, Q. et al. Determination of potential main sites of apixaban binding in human serum albumin by combined spectroscopic and docking investigations. RSC Adv.5(99), 81696–81706. 10.1039/C5RA15430H (2015).
Devine, E., Krieter, D. H., Rüth, M., Jankovski, J. & Lemke, H. D. Binding affinity and capacity for the uremic toxin indoxyl sulfate. Toxins6(2), 416–429. 10.3390/toxins6020416 (2014). PubMed PMC
Sakai, T. et al. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm. Res.18(4), 520–524. 10.1023/A:1011014629551 (2001). PubMed
Su, L. et al. Abcb1a and Abcb1b genes function differentially in blood–testis barrier dynamics in the rat. Cell. Death Dis.8(9), 9. 10.1038/cddis.2017.435 (2017). PubMed PMC
Horsey, A. J., Cox, M. H., Sarwat, S. & Kerr, I. D. The multidrug transporter ABCG2: still more questions than answers. Biochem. Soc. Trans.44(3), 824–830. 10.1042/BST20160014 (2016). PubMed PMC
Grishanova, A. Y. & Perepechaeva, M. L. Aryl hydrocarbon receptor in oxidative stress as a double agent and its biological and therapeutic significance. Int. J. Mol. Sci.23(12), 12. 10.3390/ijms23126719 (2022). PubMed PMC
Wang, L. et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab. Dispos. Biol. Fate Chem.38(3), 448–458. 10.1124/dmd.109.029694 (2010). PubMed
Lu, C. L. et al. Indoxyl-sulfate-induced redox imbalance in chronic kidney disease. Antioxidants10(6), 936. 10.3390/antiox10060936 (2021). PubMed PMC
Sekine, T., Miyazaki, H. & Endou, H. Molecular physiology of renal organic anion transporters. Am. J. Physiol. -Ren. Physiol.290(2), F251–F261. 10.1152/ajprenal.00439.2004 (2006). PubMed
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552. 10.1093/nar/gkab1038 (2022). PubMed PMC