Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38567029
PubMed Central
PMC10985644
DOI
10.1155/2024/1191462
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The cornea is one of the most commonly transplanted tissues worldwide. It is used to restore vision when severe visual impairment or blindness occurs in patients with corneal diseases or after trauma. Due to the global shortage of healthy donor corneas, decellularized corneal tissue has significant potential as an alternative to corneal transplantation. It preserves the native and biological ultrastructure of the cornea and, therefore, represents the most promising scaffold. This article discusses different methods of corneal decellularization based on the current literature. We searched PubMed.gov for articles from January 2009 to December 2023 using the following keywords: corneal decellularization, decellularization methods, and corneal transplantation. Although several methods of decellularization of corneal tissue have been reported, a universal standardised protocol of corneal decellularization has not yet been introduced. In general, a combination of decellularization methods has been used for efficient decellularization while preserving the optimal properties of the corneal tissue.
Zobrazit více v PubMed
Armitage W. J. Preservation of human cornea. Transfusion Medicine and Hemotherapy: Offizielles Organ Der Deutschen Gesellschaft Fur Transfusionsmedizin Und Immunhamatologie . 2011;38(2):143–147. doi: 10.1159/000326632. PubMed DOI PMC
Ahearne M. Corneal extracellular matrix decellularization. Methods in Cell Biology . 2020;157(2020):81–95. doi: 10.1016/bs.mcb.2019.10.013. PubMed DOI
Shi Y., Bikkuzin T., Song Z., et al. Comprehensive evaluation of decellularized porcine corneal after clinical transplantation. Xenotransplantation . 2017;24(6):p. 6. doi: 10.1111/xen.12338. PubMed DOI
Gain P., Jullienne R., He Z., et al. Global survey of corneal transplantation and eye banking. JAMA ophthalmology . 2016;134(2):167–173. doi: 10.1001/jamaophthalmol.2015.4776. PubMed DOI
Fernández-Pérez J., Ahearne M. Decellularization and recellularization of cornea: progress towards a donor alternative. Methods (San Diego, Calif) . 2020;171(Jan. 2020):86–96. doi: 10.1016/j.ymeth.2019.05.009. PubMed DOI
Du L., Wu X., Pang K., Yang Y. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. British Journal of Ophthalmology . 2011;95(3):410–414. doi: 10.1136/bjo.2008.142539. PubMed DOI
Polisetti N., Schmid A., Schlötzer-Schrehardt U., et al. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Scientific Reports . 2021;11(1):p. 2992. doi: 10.1038/s41598-021-82678-3. PubMed DOI PMC
Crapo P. M., Gilbert T. W., Badylak S. F. An overview of tissue and whole organ decellularization processes. Biomaterials . 2011;32(12):3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC
Neishabouri A., Soltani Khaboushan A., Daghigh F., Kajbafzadeh A.-M., Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Frontiers in Bioengineering and Biotechnology . 2022;10(2022) doi: 10.3389/fbioe.2022.805299.805299 PubMed DOI PMC
Lynch A. P., Wilson S. L., Ahearne M. Dextran preserves native corneal structure during decellularization. Tissue Engineering Part C Methods . 2016;22(6):561–572. doi: 10.1089/ten.tec.2016.0017. PubMed DOI
Wilson S. L., Sidney L. E., Dunphy S. E., Rose J. B., Hopkinson A. Keeping an eye on decellularized corneas: a review of methods, characterization and applications. Journal of Functional Biomaterials . 2013;4(3):114–161. doi: 10.3390/jfb4030114. PubMed DOI PMC
Ponce Márquez S., Martínez V. S., McIntosh Ambrose W., et al. Decellularization of bovine corneas for tissue engineering applications. Acta Biomaterialia . 2009;5(6):1839–1847. doi: 10.1016/j.actbio.2009.02.011. PubMed DOI
Dong M., Zhao L., Wang F., et al. Rapid porcine corneal decellularization through the use of sodium N-lauroyl glutamate and supernuclease. Journal of Tissue Engineering . 2019;10 doi: 10.1177/2041731419875876.204173141987587 PubMed DOI PMC
Shen X., Li S., Zhao X., et al. Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect. Bioactive Materials . 2023;20(Feb. 2023):434–448. doi: 10.1016/j.bioactmat.2022.06.006. PubMed DOI PMC
Zhang Y., Hu Z., Qu J., et al. Tissue-engineered corneal endothelial sheets using ultrathin acellular porcine corneal stroma substrates for endothelial keratoplasty. ACS Biomaterials Science and Engineering . 2022;8(3):1301–1311. doi: 10.1021/acsbiomaterials.2c00039. PubMed DOI
Lee W., Miyagawa Y., Long C., Cooper D. K. C., Hara H. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. International Journal of Ophthalmology . 2014;7(4):587–593. doi: 10.3980/j.issn.2222-3959.2014.04.01. PubMed DOI PMC
Yoeruek E., Bayyoud T., Maurus C., et al. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmologica . 2012;90(2):e125–e131. doi: 10.1111/j.1755-3768.2011.02261.x. PubMed DOI
Bayyoud T., Thaler S., Hofmann J., et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Current Eye Research . 2012;37(3):179–186. doi: 10.3109/02713683.2011.644382. PubMed DOI
Mertsch S., Hasenzahl M., Reichl S., Geerling G., Schrader S. Decellularized human corneal stromal cell sheet as a novel matrix for ocular surface reconstruction. Journal of Tissue Engineering and Regenerative Medicine . 2020;14(9):1318–1332. doi: 10.1002/term.3103. PubMed DOI
Gilpin A., Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. BioMed Research International . 2017;2017:13. doi: 10.1155/2017/9831534.9831534 PubMed DOI PMC
Yoon C. H., Choi H. J., Kim M. K. Corneal xenotransplantation: where are we standing? Progress in Retinal and Eye Research . 2021;80 doi: 10.1016/j.preteyeres.2020.100876.100876 PubMed DOI PMC
Kang H., Han Y., Jin M., et al. Decellularized squid mantle scaffolds as tissue-engineered corneal stroma for promoting corneal regeneration. Bioengineering and translational medicine . 2023;8(4) doi: 10.1002/btm2.10531.e10531 PubMed DOI PMC
Li N., Wang X., Wan P., et al. Tectonic lamellar keratoplasty with acellular corneal stroma in high-risk corneal transplantation. Molecular Vision . 2011;17:1909–1917. PubMed PMC
Liu X.-N., Zhu X.-P., Wu J., et al. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea. International Journal of Ophthalmology . 2016;9(3):325–331. doi: 10.18240/ijo.2016.03.01. PubMed DOI PMC
Islam M. M., Sharifi R., Mamodaly S., et al. Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomaterialia . 2019;96:330–344. doi: 10.1016/j.actbio.2019.07.002. PubMed DOI PMC
Lin Y., Zheng Q., Hua S., Meng Y., Chen W., Wang Y. Cross-linked decellularized porcine corneal graft for treating fungal keratitis. Scientific Reports . 2017;7(1):p. 9955. doi: 10.1038/s41598-017-08207-3. PubMed DOI PMC
Fernández-Pérez J., Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Scientific Reports . 2019;9(1) doi: 10.1038/s41598-019-49575-2.14933 PubMed DOI PMC
Zhou Q., Guaiquil V. H., Wong M., et al. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing. Acta Biomaterialia . 2021;134:177–189. doi: 10.1016/j.actbio.2021.08.011. PubMed DOI PMC
Matthyssen S., Van den Bogerd B., Dhubhghaill S. N., Koppen C., Zakaria N. Corneal regeneration: a review of stromal replacements. Acta Biomaterialia . 2018;69:31–41. doi: 10.1016/j.actbio.2018.01.023. PubMed DOI
Zhe M., Wu X., Yu P., et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D bioprinting in tissue engineering. Materials . 2023;16(8):p. 3197. doi: 10.3390/ma16083197. PubMed DOI PMC
Li K.-Y., Pan H.-A., Chen K.-H., et al. Fish-scale collagen membrane seeded with corneal endothelial cells as alternative graft for endothelial keratoplasty transplantation. ACS Biomaterials Science and Engineering . 2020;6(5):2570–2577. doi: 10.1021/acsbiomaterials.9b00562. PubMed DOI
González-Andrades M., Carriel V., Rivera-Izquierdo M., et al. Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. Evaluation of regional differences. Translational Vision Science and Technology . 2015;4(2):p. 13. doi: 10.1167/tvst.4.2.13. PubMed DOI PMC
Yam G. H.-F., Yusoff N. Z. B. M., Goh T.-W., et al. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Scientific Reports . 2016;6(1) doi: 10.1038/srep26339.26339 PubMed DOI PMC
Alió Del Barrio J. L., El Zarif M., Azaar A., et al. Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus. American Journal of Ophthalmology . 2018;186:47–58. doi: 10.1016/j.ajo.2017.10.026. PubMed DOI
Marin-Tapia H. A., Romero-Salazar L., Arteaga-Arcos J. C., Rosales-Ibáñez R., Mayorga-Rojas M. Micro-mechanical properties of corneal scaffolds from two different bio-models obtained by an efficient chemical decellularization. Journal of the Mechanical Behavior of Biomedical Materials . 2021;119 doi: 10.1016/j.jmbbm.2021.104510.104510 PubMed DOI
da Mata Martins T. M., da Silva Cunha P., Rodrigues M. A., et al. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. Materials Science and Engineering: C . 2020;116 doi: 10.1016/j.msec.2020.111215.111215 PubMed DOI
Wilson S. L., Sidney L. E., Dunphy S. E., Dua H. S., Hopkinson A. Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Current Eye Research . 2016;41(6):769–782. doi: 10.3109/02713683.2015.1062114. PubMed DOI PMC
Yam G. H.-F., Bandeira F., Liu Y.-C., et al. Effect of corneal stromal lenticule customization on neurite distribution and excitatory property. Journal of Advanced Research . 2022;38:275–284. doi: 10.1016/j.jare.2021.09.004. PubMed DOI PMC
Shafiq M. A., Gemeinhart R. A., Yue B. Y. J. T., Djalilian A. R. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Engineering Part C Methods . 2012;18(5):340–348. doi: 10.1089/ten.tec.2011.0072. PubMed DOI PMC
Fu Y., Fan X., Chen P., Shao C., Lu W. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold. Cells Tissues Organs . 2010;191(3):193–202. doi: 10.1159/000235680. PubMed DOI
Choi J. S., Williams J. K., Greven M., et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials . 2010;31(26):6738–6745. doi: 10.1016/j.biomaterials.2010.05.020. PubMed DOI
Zhang Z., Niu G., Choi J. S., Giegengack M., Atala A., Soker S. Bioengineered multilayered human corneas from discarded human corneal tissue. Biomedical Materials (Bristol, England) . 2015;10(3) doi: 10.1088/1748-6041/10/3/035012.035012 PubMed DOI
Luo H., Lu Y., Wu T., Zhang M., Zhang Y., Jin Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials . 2013;34(28):6748–6759. doi: 10.1016/j.biomaterials.2013.05.045. PubMed DOI
Huang Y.-H., Tseng F.-W., Chang W.-H., et al. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomaterialia . 2017;58:238–243. doi: 10.1016/j.actbio.2017.05.060. PubMed DOI
Hao Y., Zhou J., Tan J., et al. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioactive Materials . 2023;29(Nov. 2023):265–278. doi: 10.1016/j.bioactmat.2023.07.005. PubMed DOI PMC
Lin H.-J., Wang T.-J., Li T.-W., et al. Development of decellularized cornea by organic acid treatment for corneal regeneration. Tissue Engineering Part A . 2019;25(7–8):652–662. doi: 10.1089/ten.tea.2018.0162. PubMed DOI
He Z., Forest F., Bernard A., et al. Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts. Investigative Opthalmology and Visual Science . 2016;57(15):6639–6651. doi: 10.1167/iovs.16-20256. PubMed DOI
Huh M.-I., Lee K.-P., Kim J., Yi S., Park B.-U., Kim H. K. Generation of femtosecond laser-cut decellularized corneal lenticule using hypotonic trypsin-EDTA solution for corneal tissue engineering. Journal of Ophthalmology . 2018;2018:12. doi: 10.1155/2018/2590536.2590536 PubMed DOI PMC
Van den Bogerd B., Ní Dhubhghaill S., Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. Journal of Tissue Engineering and Regenerative Medicine . 2018;12(4):e2020–e2028. doi: 10.1002/term.2633. PubMed DOI PMC
Qin S., Zheng S., Qi B., Guo R., Hou G. Decellularized human stromal lenticules combine with corneal epithelial-like cells: a new resource for corneal tissue engineering. Stem Cells International . 2019;2019:10. doi: 10.1155/2019/4252514.4252514 PubMed DOI PMC
García-Gareta E., Abduldaiem Y., Sawadkar P., Kyriakidis C., Lali F., Greco K. V. Decellularised scaffolds: just a framework? Current knowledge and future directions. Journal of Tissue Engineering . 2020;11 doi: 10.1177/2041731420942903.204173142094290 PubMed DOI PMC
Zhou Y., Wu Z., Ge J., et al. Development and characterization of acellular porcine corneal matrix using sodium dodecylsulfate. Cornea . 2011;30(1):73–82. doi: 10.1097/ico.0b013e3181dc8184. PubMed DOI
Isidan A., Liu S., Li P., et al. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation . 2019;26(6) doi: 10.1111/xen.12564.e12564 PubMed DOI PMC
Du L., Wu X. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artificial Organs . 2011;35(7):691–705. doi: 10.1111/j.1525-1594.2010.01174.x. PubMed DOI
Fernández-Pérez J., Madden P. W., Ahearne M. Engineering a corneal stromal equivalent using a novel multilayered fabrication assembly technique. Tissue Engineering Part A . 2020;26(19–20):1030–1041. doi: 10.1089/ten.tea.2020.0019. PubMed DOI PMC
Liu Y.-C., Teo E. P. W., Ang H. P., et al. Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE) Scientific Reports . 2018;8(1):p. 1831. doi: 10.1038/s41598-018-20267-7. PubMed DOI PMC
Alio del Barrio J. L., Chiesa M., Garagorri N., et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Experimental Eye Research . 2015;132:91–100. doi: 10.1016/j.exer.2015.01.020. PubMed DOI
Lynch A. P., Ahearne M. Strategies for developing decellularized corneal scaffolds. Experimental Eye Research . 2013;108:42–47. doi: 10.1016/j.exer.2012.12.012. PubMed DOI
Ahearne M., Lynch A. P. Early observation of extracellular matrix-derived hydrogels for corneal stroma regeneration. Tissue Engineering Part C Methods . 2015;21(10):1059–1069. doi: 10.1089/ten.tec.2015.0008. PubMed DOI
Gonzalez-Andrades M., de la Cruz Cardona J., Ionescu A. M., Campos A., Del Mar Perez M., Alaminos M. Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Investigative Opthalmology and Visual Science . 2011;52(1):215–222. doi: 10.1167/iovs.09-4773. PubMed DOI
Hazra S., Akepogu J., Krishna S., Pulipaka S., Bagga B., Ramachandran C. Use of decellularized SMILE (Small-Incision lenticule extraction) lenticules for engineering the corneal endothelial layer: a proof-of-concept. Current Eye Research . 2023;48(3):251–262. doi: 10.1080/02713683.2022.2151018. PubMed DOI
Sasaki S., Funamoto S., Hashimoto Y., et al. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Molecular Vision . 2009;15:2022–2028. PubMed PMC
Hashimoto Y., Funamoto S., Sasaki S., et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials . 2010;31(14):3941–3948. doi: 10.1016/j.biomaterials.2010.01.122. PubMed DOI
Guler S., Aslan B., Hosseinian P., Aydin H. M. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. Tissue Engineering Part C Methods . 2017;23(9):540–547. doi: 10.1089/ten.tec.2017.0090. PubMed DOI
Topuz B., Günal G., Guler S., Aydin H. M. Use of supercritical CO2 in soft tissue decellularization. Methods in Cell Biology . 2020;157:49–79. doi: 10.1016/bs.mcb.2019.10.012. PubMed DOI
Liang C.-M., Hsieh D.-J., Tseng F.-W., Srinivasan P., Yeh M.-L., Tai M.-C. Acellular porcine cornea produced by supercritical carbon dioxide extraction: a potential substitute for human corneal regeneration. Cornea . 2022;41(3):328–338. doi: 10.1097/ico.0000000000002790. PubMed DOI
Ahearne M., Fernández-Pérez J. Fabrication of corneal extracellular matrix-derived hydrogels. Methods in Molecular Biology . 2020;2145:159–168. doi: 10.1007/978-1-0716-0599-8_11. PubMed DOI
Oh J. Y., Kim M. K., Lee H. J., Ko J. H., Wee W. R., Lee J. H. Processing porcine cornea for biomedical applications. Tissue Engineering Part C Methods . 2009;15(4):635–645. doi: 10.1089/ten.tec.2009.0022. PubMed DOI
Fernández-Pérez J., Kador K. E., Lynch A. P., Ahearne M. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Materials Science and Engineering: C . 2020;108 doi: 10.1016/j.msec.2019.110415.110415 PubMed DOI
Li Q., Xie C., Wang H., Zhang F., Mu L. A novel serum: electrophoresis method to prepare acellular corneal matrix as an artificial corneal scaffold. The International Journal of Artificial Organs . 2020;43(2):127–136. doi: 10.1177/0391398819869941. PubMed DOI
Shao Y., Tang J., Zhou Y., et al. A novel method in preparation of acellularporcine corneal stroma tissue for lamellar keratoplasty. American Journal of Tourism Research . 2015;7(12):2612–2629. PubMed PMC
Feng Y., Wang W. In vivo confocal microscopic observation of lamellar corneal transplantation in the rabbit using xenogenic acellular corneal scaffolds as a substitute. Chinese Medical Journal . 2015;128(7):933–940. doi: 10.4103/0366-6999.154301. PubMed DOI PMC
Wu Z., Zhou Y., Li N., et al. The use of phospholipase A(2) to prepare acellular porcine corneal stroma as a tissue engineering scaffold. Biomaterials . 2009;30(21):3513–3522. doi: 10.1016/j.biomaterials.2009.03.003. PubMed DOI
Cen Y.-J., Wang W., Feng Y., Feng Y. Preliminary studies of constructing a tissue-engineered lamellar corneal graft by culturing mesenchymal stem cells onto decellularized corneal matrix. International Journal of Ophthalmology . 2021;14(1):10–18. doi: 10.18240/ijo.2021.01.02. PubMed DOI PMC
Rodella U., Bosio L., Ferrari S., et al. Porcine cornea storage ex vivo model as an alternative to human donor tissues for investigations of endothelial layer preservation. Translational Vision Science and Technology . 2023;12(4):p. 24. doi: 10.1167/tvst.12.4.24. PubMed DOI PMC
Subasinghe S. K., Ogbuehi K. C., Mitchell L., Dias G. J. Animal model with structural similarity to human corneal collagen fibrillar arrangement. Anatomical Science International . 2021;96(2):286–293. doi: 10.1007/s12565-020-00590-8. PubMed DOI
Kafarnik C., Faraj L. A., Ting D. S. J., Goh J. N., Said D. G., Dua H. S. Ex vivo demonstration of canine corneal pre-Descemet’s anatomy using pneumodissection as for the big bubble technique for deep anterior lamellar keratoplasty. Scientific Reports . 2023;13(1):p. 5922. doi: 10.1038/s41598-022-24438-5. PubMed DOI PMC
Turchyn M., Marushchak M., Krynytska I., Klishch I. Clinical efficacy of therapeutic keratoplasty using corneal xenografts in patients with corneal ulcers. Romanian Journal of Ophthalmology . 2019;63(3):257–263. doi: 10.22336/rjo.2019.39. PubMed DOI PMC
Li S., Li M., Gu L., et al. Risk factors influencing survival of acellular porcine corneal stroma in infectious keratitis: a prospective clinical study. Journal of Translational Medicine . 2019;17(1):p. 434. doi: 10.1186/s12967-019-02192-z. PubMed DOI PMC
El-Massry A., Ibrahim O., Abdalla M., Osman I., Mahmoud S. Safety and indicative effectiveness of porcine corneal lenticular implants in patients with advanced keratoconus and post lasik ectasia: a retrospective clinical study. Clinical Ophthalmology . 2021;15:3165–3171. doi: 10.2147/opth.s325666. PubMed DOI PMC
Alió Del Barrio J. L., Alió J. L. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies. Eye and Vision (London, England) . 2018;5(1):p. 28. doi: 10.1186/s40662-018-0122-1. PubMed DOI PMC
Riau A. K., Liu Y.-C., Yam G. H. F., Mehta J. S. Stromal keratophakia: corneal inlay implantation. Progress in Retinal and Eye Research . 2020;75(Mar. 2020) doi: 10.1016/j.preteyeres.2019.100780.100780 PubMed DOI
Kuşoğlu A., Yangın K., Özkan S. N., et al. Different decellularization methods in bovine lung tissue reveals distinct biochemical composition, stiffness, and viscoelasticity in reconstituted hydrogels. ACS Applied Bio Materials . 2023;6(2):793–805. doi: 10.1021/acsabm.2c00968. PubMed DOI PMC
Fooladi S., Faramarz S., Dabiri S., Kajbafzadeh A., Nematollahi M. H., Mehrabani M. An efficient strategy to recellularization of a rat aorta scaffold: an optimized decellularization, detergent removal, and Apelin-13 immobilization. Biomaterials Research . 2022;26(1):p. 46. doi: 10.1186/s40824-022-00295-1. PubMed DOI PMC
Mendibil U., Ruiz-Hernandez R., Retegi-Carrion S., Garcia-Urquia N., Olalde-Graells B., Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. International Journal of Molecular Sciences . 2020;21(15):p. 5447. doi: 10.3390/ijms21155447. PubMed DOI PMC
Zhang M.-C., Liu X., Jin Y., Jiang D.-L., Wei X.-S., Xie H.-T. Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. American Journal of Transplantation . 2015;15(4):1068–1075. doi: 10.1111/ajt.13096. PubMed DOI
Wilson A., Jones J., Marshall J. Biomechanical evaluation of decellularized and crosslinked corneal implants manufactured from porcine corneas as a treatment option for advanced keratoconus. Frontiers in Bioengineering and Biotechnology . 2022;10(2022) doi: 10.3389/fbioe.2022.862969.862969 PubMed DOI PMC
Daoud Y. J., Smith R., Smith T., Akpek E. K., Ward D. E., Stark W. J. The intraoperative impression and postoperative outcomes of gamma-irradiated corneas in corneal and glaucoma patch surgery. Cornea . 2011;30(12):1387–1391. doi: 10.1097/ico.0b013e31821c9c09. PubMed DOI
Utine C. A., Tzu J. H., Akpek E. K. Lamellar keratoplasty using gamma-irradiated corneal lenticules. American Journal of Ophthalmology . 2011;151(1):170–174.e1. doi: 10.1016/j.ajo.2010.08.007. PubMed DOI
Wu F., Jin X., Xu Y., Yang Y. Treatment of corneal perforation with lenticules from small incision lenticule extraction surgery: a preliminary study of 6 patients. Cornea . 2015;34(6):658–663. doi: 10.1097/ico.0000000000000397. PubMed DOI
Min Klimesova Y., Nemcokova M., Netukova M., et al. Corneal Stromal Lenticule Transplantation for the Treatment of Corneal Ulcers . Olomouc, Czechoslovakia: Biomedical Papers of the Medical Faculty of the University Palacky; 2023. PubMed
Xue C., Xia Y., Chen Y., Yang L., Huang Z. [Treatment of large corneal perforations with acellular multilayer of corneal stromal lenticules harvested from femtosecond laser lenticule extraction] [Zhonghua Yan Ke Za Zhi] Chinese Journal of Ophthalmology . 2015;51(9):655–659. PubMed
El Zarif M., Alió J. L., Alió Del Barrio J. L., et al. Corneal stromal regeneration therapy for advanced keratoconus: long-term outcomes at 3 years. Cornea . 2021;40(6):741–754. doi: 10.1097/ico.0000000000002646. PubMed DOI