Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks

. 2018 Feb 01 ; 10 (2) : 607-615.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid29385445

Grantová podpora
R15 AI126385 NIAID NIH HHS - United States

Bacterial endosymbionts of ticks are of interest due to their close evolutionary relationships with tick-vectored pathogens. For instance, whereas many ticks contain Francisella-like endosymbionts (FLEs), others transmit the mammalian pathogen Francisella tularensis. We recently sequenced the genome of an FLE present in the hard tick Amblyomma maculatum (FLE-Am) and showed that it likely evolved from a pathogenic ancestor. In order to expand our understanding of FLEs, in the current study we sequenced the genome of an FLE in the soft tick Ornithodoros moubata and compared it to the genomes of FLE-Am, Francisella persica-an FLE in the soft tick Argus (Persicargas) arboreus, Francisella sp. MA067296-a clinical isolate responsible for an opportunistic human infection, and F. tularensis, the established human pathogen. We determined that FLEs and MA067296 belonged to a sister taxon of mammalian pathogens, and contained inactivated versions of virulence genes present in F. tularensis, indicating that the most recent common ancestor shared by FLEs and F. tularensis was a potential mammalian pathogen. Our analyses also revealed that the two soft ticks (O. moubata and A. arboreus) probably acquired their FLEs separately, suggesting that the virulence attenuation observed in FLEs are not the consequence of a single acquisition event followed by speciation, but probably due to independent transitions of pathogenic francisellae into nonpathogenic FLEs within separate tick lineages. Additionally, we show that FLEs encode intact pathways for the production of several B vitamins and cofactors, denoting that they could function as nutrient-provisioning endosymbionts in ticks.

Zobrazit více v PubMed

Ahantarig A, Trinachartvanit W, Baimai V, Grubhoffer L.. 2013. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol (Praha). 58(5):419–428. PubMed

Albertsen M, et al.2013. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 31(6):533–538.http://dx.doi.org/10.1038/nbt.2579 PubMed DOI

Azagi T, et al.2017. Francisella like endosymbionts and Rickettsia species in local and imported Hyalomma ticks. Appl Environ Microbiol. 83(18): pii:AEM.01302-17. doi:10.1128/AEM.01302-17. PubMed DOI PMC

Barns SM, Grow CC, Okinaka RT, Keim P, Kuske CR.. 2005. Detection of diverse new Francisella-like bacteria in environmental samples. Appl Environ Microbiol. 71(9):5494–5500.http://dx.doi.org/10.1128/AEM.71.9.5494-5500.2005 PubMed DOI PMC

Baumann P. 2005. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 59:155–189.http://dx.doi.org/10.1146/annurev.micro.59.030804.121041 PubMed DOI

Bennett GM, Moran NA.. 2015. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 112(33):10169–10176. PubMed PMC

Bermingham A, Derrick JP.. 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24(7):637–648.http://dx.doi.org/10.1002/bies.10114 PubMed DOI

Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.http://dx.doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC

Boyd BM, et al.2017. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol. 34(7):1743–1757.http://dx.doi.org/10.1093/molbev/msx117 PubMed DOI PMC

Budachetri K, et al.2014. An insight into the microbiome of the Amblyomma maculatum (Acari: ixodidae). J Med Entomol. 51(1):119–129.http://dx.doi.org/10.1603/ME12223 PubMed DOI PMC

Challacombe JF, et al.2017. Whole-genome relationships among Francisella bacteria of diverse origins define new species and provide specific regions for detection. Appl Environ Microbiol. 83(6):e00174-17–e00116. PubMed PMC

Clayton AL, et al.2012. A Novel Human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLOS Genet. 8(11):e1002990. PubMed PMC

Darriba D, Taboada GL, Doallo R, Posada D.. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772..http://dx.doi.org/10.1038/nmeth.2109 PubMed DOI PMC

Duron O, et al.2017. Evolutionary changes in symbiont community structure in ticks. Mol Ecol. 38:42–49. PubMed

Duron O, et al.2015. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLOS Pathog. 11(5):e1004892.http://dx.doi.org/10.1371/journal.ppat.1004892 PubMed DOI PMC

Gerhart JG, Moses AS, Raghavan R.. 2016. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci Rep. 6:33670.. PubMed PMC

Gottlieb Y, Lalzar I, Klasson L.. 2015. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol. 7(6):1779–1796.http://dx.doi.org/10.1093/gbe/evv108 PubMed DOI PMC

Gillespie JJ, et al.2012. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol. 194(2):376–394. PubMed PMC

Hall AAG, et al.2016. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol. 18(8):2591–2603.http://dx.doi.org/10.1111/1462-2920.13351 PubMed DOI

Hansen AK, Moran NA.. 2011. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA. 108(7):2849–2854. PubMed PMC

Hinrichs SH, et al.2016. Reclassification of Wolbachia persica as Francisella persica comb. nov. and emended description of the family Francisellaceae. Int J Syst Evol Microbiol. 66(3):1200–1205.http://dx.doi.org/10.1099/ijsem.0.000855 PubMed DOI

Huelsenbeck JP, Ronquist F.. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755.http://dx.doi.org/10.1093/bioinformatics/17.8.754 PubMed DOI

Huson DH, Auch AF, Qi J, Schuster SC.. 2007. MEGAN analysis of metagenomic data. Genome Res. 17(3):377–386.http://dx.doi.org/10.1101/gr.5969107 PubMed DOI PMC

Jeyaprakash A, Hoy MA.. 2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol. 47(1):1–18.http://dx.doi.org/10.1007/s10493-008-9203-5 PubMed DOI

Kanehisa M, Sato Y, Morishima K.. 2016. BlastKOALA and GhostKOALA: kEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 428(4):726–731. PubMed

Keim P, Johansson A, Wagner DM.. 2007. Molecular epidemiology, evolution, and ecology of Francisella. Ann NY Acad Sci. 1105:30–66.http://dx.doi.org/10.1196/annals.1409.011 PubMed DOI

Klein CC, et al.2013. Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses. PLoS ONE. 8(11):e79786.. PubMed PMC

Klindworth A, et al.2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1):e1. PubMed PMC

Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C.. 2007. Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol. 73(20):6584–6594.http://dx.doi.org/10.1128/AEM.00537-07 PubMed DOI PMC

Kugeler KJ, et al.2008. Isolation and characterization of a novel Francisella sp. from human cerebrospinal fluid and blood. J Clin Microbiol. 46(7):2428–2431.http://dx.doi.org/10.1128/JCM.00698-08 PubMed DOI PMC

Langmead B, Salzberg SL.. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359.http://dx.doi.org/10.1038/nmeth.1923 PubMed DOI PMC

Lee S-H, et al.2016. Novel detection of Coxiella spp., Theileria luwenshuni, and T. ovis endosymbionts in deer keds (Lipoptena fortisetosa). PLOS ONE. 11(5):e0156727. PubMed PMC

Li H, et al.2009. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.http://dx.doi.org/10.1093/bioinformatics/btp352 PubMed DOI PMC

López-Sánchez MJ, et al.2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet. 5(11):e1000721.. PubMed PMC

Mans BJ, et al.2016. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis. 7(4):509–535.http://dx.doi.org/10.1016/j.ttbdis.2016.02.002 PubMed DOI

Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A.. 2015. Solving a bloody mess: b-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol. 7(10):2871–2884. PubMed PMC

Manyam G, Birerdinc A, Baranova A.. 2015. KPP: kEGG pathway painter. BMC Syst Biol. 9(Suppl 2):S3. PubMed PMC

McCutcheon JP, Moran NA.. 2010. Functional convergence in reduced genomes of bacterial symbionts spanning 200 million years of evolution. Genome Biol Evol. 2:708–718. PubMed PMC

Meibom KL, Charbit A.. 2010. The unraveling panoply of Francisella tularensis virulence attributes. Curr Opin Microbiol. 13(1):11–17.http://dx.doi.org/10.1016/j.mib.2009.11.007 PubMed DOI

Moran NA, Plague GR.. 2004. Genomic changes following host restriction in bacteria. Curr Opin Gen Dev. 14(6):627–633.http://dx.doi.org/10.1016/j.gde.2004.09.003 PubMed DOI

Moses AS, Millar JA, Bonazzi M, Beare PA, Raghavan R.. 2017. Horizontally acquired biosynthesis genes boost Coxiella burnetii’s physiology. Front Cell Infect Microbiol. 7:174. PubMed PMC

Noda H, Munderloh UG, Kurtti TJ.. 1997. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol. 63(10):3926–3932. PubMed PMC

Omsland A, et al.2009. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA. 106(11):4430–4434. PubMed PMC

Peng Y, Leung HCM, Yiu SM, Chin FYL.. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428.http://dx.doi.org/10.1093/bioinformatics/bts174 PubMed DOI

Petersen JM, Mead PS, Schriefer ME.. 2009. Francisella tularensis : an arthropod-borne pathogen. Vet Res. 40(2):7. PubMed PMC

Rego ROM, et al.2005. Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol. 35(9):991–1004.http://dx.doi.org/10.1016/j.ibmb.2005.04.001 PubMed DOI

Reinhardt C, Aeschlimann A, Hecker H.. 1972. Distribution of Rickettsia-like microorganisms in various organs of an Ornithodorus moubata laboratory strain (Ixodoidea, Argasidae) as revealed by electron microscopy. Zeitschrift Fur Parasitenkd. 39(3):201–209.http://dx.doi.org/10.1007/BF00329456 PubMed DOI

Renesto P, et al.2003. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362(9382):447–449.http://dx.doi.org/10.1016/S0140-6736(03)14071-8 PubMed DOI

Rowe HM, Huntley JF.. 2015. From the Outside-In: the Francisella tularensis envelope and virulence. Front Cell Infect Microbiol. 5:1–20. PubMed PMC

Sabree ZL, Degnan PH, Moran NA.. 2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA. 106(46):19521–19516. PubMed PMC

Sievers F, et al.2014. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7(1):539.http://dx.doi.org/10.1038/msb.2011.75 PubMed DOI PMC

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M.. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34(90001):D32–D36. PubMed PMC

Smith TA, Driscoll T, Gillespie JJ, Raghavan R.. 2015. A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biol Evol. 7(3):831–838. PubMed PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313.http://dx.doi.org/10.1093/bioinformatics/btu033 PubMed DOI PMC

Suitor EC, Weiss E.. 1961. Isolation of a Rickettsialike microorganism (Wolbachia persica, n. sp.) from Argas persicus (Oken). J Infect Dis. 108(1):95–106.

Talavera G, Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577.http://dx.doi.org/10.1080/10635150701472164 PubMed DOI

Williams KP, et al.2010. Phylogeny of gammaproteobacteria. J Bacteriol. 192(9):2305–2314. PubMed PMC

Wright CL, Sonenshine DE, Gaff HD, Hynes WL.. 2015. Rickettsia parkeri transmission to Amblyomma americanum by cofeeding with Amblyomma maculatum (Acari: ixodidae) and potential for spillover. J Med Entomol. 52(5):1090–1095.http://dx.doi.org/10.1093/jme/tjv086 PubMed DOI

Zientz E, Beyaert I, Gross R, Feldhaar H.. 2006. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl Environ Microbiol. 72(9):6027–6033.http://dx.doi.org/10.1128/AEM.00933-06 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum

. 2021 Dec 24 ; 10 () : . [epub] 20211224

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace