Avian Louse Flies and Their Trypanosomes: New Vectors, New Lineages and Host-Parasite Associations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35336159
PubMed Central
PMC8948672
DOI
10.3390/microorganisms10030584
PII: microorganisms10030584
Knihovny.cz E-zdroje
- Klíčová slova
- Hippoboscidae, Ornithoica, Ornithomya, Ornithophila, Trypanosoma, avian parasite, host specificity, transmission,
- Publikační typ
- časopisecké články MeSH
Louse flies (Hippoboscidae) are permanent ectoparasites of birds and mammals. They have a cosmopolitan distribution with more than 200 described species. The aim of this study was to reveal host-vector-parasite associations between louse flies, birds, and trypanosomes. A total of 567 louse fly specimens belonging to 7 species were collected from birds at several localities in Czechia, including the rare species Ornithophila metallica and Ornithoica turdi. There was a significant difference in the occurrence of Ornithomya avicularia and Ornithomya fringillina on bird hosts according to their migratory status, O. fringillina being found more frequently on long-distance migrants. Trypanosomes were found in four species, namely, Ornithomya avicularia, O. fringillina, O. biloba, and Ornithoica turdi; the later three species are identified in this paper as natural trypanosome vectors for the first time. The prevalence of trypanosomes ranged between 5 and 19%, the highest being in O. biloba and the lowest being in O. fringillina. Phylogenetic analysis of the SSU rRNA gene revealed that a vast majority of trypanosomes from hippoboscids belong to the avian T. corvi/culicavium group B. Four new lineages were revealed in group B, with louse flies being probable vectors for some of these trypanosome lineages. We also confirmed the transcontinental distribution of several trypanosome lineages. Our results show that hippoboscids of several genera are probable vectors of avian trypanosomes.
Zobrazit více v PubMed
Petersen F.T., Meier R., Kutty S.N., Wiegmann B.M. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Mol. Phylogenetics Evol. 2007;45:111–122. doi: 10.1016/j.ympev.2007.04.023. PubMed DOI
Chalupský J. Čeleď Hippoboscidae–Klošovití. In: Chvála M.K., editor. Fauna ČSR, Svazek 22, Krevsající Mouchy a Střečci. Nakladatelství Československé Akademie Věd; Prague, Czech Republic: 1980. pp. 475–478.
Dick C.W. Checklist of world Hippoboscidae (Diptera: Hippoboscoidea) Department of Zoology, Field Museum of Natural History; Chicago, IL, USA: 2006. pp. 1–7.
Maa T. A revised checklist and concise host index of Hippoboscidae (Diptera) Pacific Insects Monogr. 1969;20:261–299.
Sychra O. Hippoboscidae Samouelle, 1819. In: Jedlička L., Kúdela M., Stloukalová V., editors. Checklist of Diptera of the Czech Republic and Slovakia. Electronic Version 2. 2009. [(accessed on 14 May 2021)]. Available online: http://zoology.fns.uniba.sk/diptera2009>+CD-ROM.
Oboňa J., Sychra O., Greš S., Heřman P., Manko P., Roháček J., Šestáková A., Šlapák J., Hromada M. A revised annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia. ZooKeys. 2019;862:129–152. doi: 10.3897/zookeys.862.25992. PubMed DOI PMC
Lehikoinen A., Pohjola P., Valkama J., Mutanen M., Jaakko L. Promiscuous specialists: Host specificity patterns among generalist louse flies. PLoS ONE. 2021;16:e0247698. doi: 10.1371/journal.pone.0247698. PubMed DOI PMC
Tomás A., da Fonseca I.P., Valkenburg T., Rebelo M.T. Louse flies in Azorean and mainland populations of four Passeriformes species: A new perspective to parasite island syndromes. Int. J. Parasitol. Parasites Wildl. 2020;14:33–40. doi: 10.1016/j.ijppaw.2020.12.004. PubMed DOI PMC
Corbet G.B. The life-history and host-relations of a hippoboscid fly Ornithomyia fringillina Curtis. J. Anim. Ecol. 1956;25:403–420. doi: 10.2307/1934. DOI
Bezerra-Santos M.A., Otranto D. Keds, the enigmatic flies and their role as vectors of pathogens. Acta Trop. 2020;209:105521. doi: 10.1016/j.actatropica.2020.105521. PubMed DOI
Baker J.R. Studies on Trypanosoma avium Danilewsky 1885.2. Transmission by Ornithomyia avicularia. Parasitology. 1956;46:321–334. PubMed
Baker J.R. Biology of the trypanosomes of birds. In: Lumsden W.H.R., Evans D.A., editors. Biology of the Kinetoplastida. Academic Press; London, UK: New York, NY, USA: San Francisco, CA, USA: 1976. pp. 131–174.
Mungomba L.M., Molyneux D.H., Wallbanks K.R. Host-parasite relationship of Trypanosoma corvi in Ornithomyia avicularia. Parasitol. Res. 1989;75:167–174. doi: 10.1007/BF00931269. PubMed DOI
Votýpka J., Oborník M., Volf P., Svobodová M., Lukeš J. Trypanosoma avium of raptors (Falconiformes): Phylogeny and identification of vectors. Parasitology. 2002;12:253–263. doi: 10.1017/S0031182002002093. PubMed DOI
Svobodová M., Volf P., Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med. Vet. Entomol. 2015;29:444–447. doi: 10.1111/mve.12130. PubMed DOI
Zídková L., Cepicka I., Szabová J., Svobodová M. Biodiversity of avian trypanosomes. Infect. Genet. Evol. 2012;12:102–112. doi: 10.1016/j.meegid.2011.10.022. PubMed DOI
Votýpka J., Szabová J., Rádrová J., Zídková L., Svobodová M. Trypanosoma culicavium sp. nov., an avian trypanosome transmitted by Culex mosquitoes. Int. J. Syst. Evol. Microbiol. 2012;62:745–754. doi: 10.1099/ijs.0.032110-0. PubMed DOI
Fialová M., Santolíková A., Brontáková A., Brzoňová J., Svobodová M. Complete life cycle of Trypanosoma thomasbancrofti, an avian trypanosome transmitted by culicine mosquitoes. Microorganisms. 2021;9:2101. doi: 10.3390/microorganisms9102101. PubMed DOI PMC
Bennett G.F. Development of trypanosomes of the T. avium complex in the invertebrate host. Can. J. Zool. 1970;48:945–957. doi: 10.1139/z70-169. PubMed DOI
Bennett G.F. On the specificity and transmission of some avian trypanosomes. Can. J. Zool. 1961;39:17–33. doi: 10.1139/z61-003. DOI
Votýpka J., Svobodová M. Trypanosoma avium: Experimental transmission from black flies to canaries. Parasitol. Res. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI
Miltgen F., Landau I. Culicoides nubeculosus, an experimental vector of a new trypanosome from psittaciform Trypanosoma bakeri n. sp. Ann. Parasitol. Hum. Comp. 1982;57:423–428. doi: 10.1051/parasite/1982575423. PubMed DOI
Chandenier J., Landau I., Baccam D. Experimental transmission of passeriform trypanosomes by Culicoides. Ann. Parasitol. Hum. Comp. 1991;66:9–13. doi: 10.1051/parasite/19916619. DOI
Svobodová M., Dolnik O.V., Čepička I., Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasites Vectors. 2017;10:224. doi: 10.1186/s13071-017-2158-9. PubMed DOI PMC
Kato H., Gomez E.A., Cáceres A.G., Vargas F., Mimori T., Yamamoto K., Iwata H., Korenaga M., Velez L., Hashiguchi Y. Natural Infections of Man-Biting Sand Flies by Leishmania and Trypanosoma Species in the Northern Peruvian Andes. Vector-Borne Zoonotic Dis. 2011;11:515–521. doi: 10.1089/vbz.2010.0138. PubMed DOI
Svobodová M., Rádrová J. Phlebotomine sandflies—potential vectors of avian trypanosomes. Acta Protozool. 2018;57:53–59. doi: 10.4467/16890027AP.18.005.8399. DOI
Hutson A.M. Keds, flat-flies and bat-flies. Diptera, Hippoboscidae and Nycteribiidae. Handbk Ident. Br. Insects. 1984;10:1–40.
Reif J., Vermouzek Z., Voříšek P., Šťastný K., Bejček V., Flousek J. Population changes in Czech passerines are predicted by their life-history and ecological traits. IBIS Int. J. Avian Sci. 2010;152:610–621. doi: 10.1111/j.1474-919X.2010.01036.x. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 29 August 2021)]. Available online: https://www.R-project.org/
Maslov D.A., Lukeš J., Jirků M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Votýpka J., Rádrová J., Skalický T., Jirků M., Jirsová D., Mihalca A.D., D’Amico G., Petrželková K.J., Modrý D., Lukeš J. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Int. J. Parasitol. 2015;45:741–748. doi: 10.1016/j.ijpara.2015.06.005. PubMed DOI
Brotánková A., Čepička I., Brzoňová J., Svobodová M. Trypanosomes of the Trypanosoma theileri group: Phylogeny and new potential vectors. Microorganisms. 2022;10:294. doi: 10.3390/microorganisms10020294. PubMed DOI PMC
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Simp. Ser. 1999;41:95–98. doi: 10.14601/PHYTOPATHOL_MEDITERR-14998U1.29. DOI
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Šochová E., Husník F., Nováková E., Halajian A., Hypša V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ. 2017;5:e4099. doi: 10.7717/peerj.4099. PubMed DOI PMC
Pornpanom P., Salakij C., Prasopsom P., Lertwatcharasarakul P., Kasorndorkbua C., Santavakul M. Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitol. Res. 2019;118:2419–2429. doi: 10.1007/s00436-019-06379-7. PubMed DOI