Complete Life Cycle of Trypanosoma thomasbancrofti, an Avian Trypanosome Transmitted by Culicine Mosquitoes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
194121
Grant Agency of Charles University
PubMed
34683422
PubMed Central
PMC8539158
DOI
10.3390/microorganisms9102101
PII: microorganisms9102101
Knihovny.cz E-zdroje
- Klíčová slova
- Culex, Trypanosoma thomasbancrofti, avian parasite, life cycle, mosquito, prediuresis, transmission,
- Publikační typ
- časopisecké články MeSH
Avian trypanosomes are cosmopolitan and common protozoan parasites of birds; nevertheless, knowledge of their life cycles and vectors remains incomplete. Mosquitoes have been confirmed as vectors of Trypanosoma culicavium and suggested as vectors of T. thomasbancrofti; however, transmission has been experimentally confirmed only for the former species. This study aims to confirm the experimental transmission of T. thomasbancrofti to birds and its localization in vectors. Culex pipiens were fed on blood using four strains of T. thomasbancrofti, isolated from vectors and avian hosts; all strains established infections, and three of them were able to develop high infection rates in mosquitoes. The infection rate of the culicine isolates was 5-28% for CUL15 and 48-81% for CUL98, 67-92% for isolate OF19 from hippoboscid fly, while the avian isolate PAS343 ranged between 48% and 92%, and heavy infections were detected in 90% of positive females. Contrary to T. culicavium, trypanosomes were localized in the hindgut, where they formed rosettes with the occurrence of free epimastigotes in the hindgut and midgut during late infections. Parasites occurred in urine droplets produced during mosquito prediuresis. Transmission to birds was achieved by the ingestion of mosquito guts containing trypanosomes and via the conjunctiva. Bird infection was proven by blood cultivation and xenodiagnosis; mature infections were present in the dissected guts of 24-26% of mosquitoes fed on infected birds. The prevalence of T. thomasbancrofti in vectors in nature and in avian populations is discussed in this paper. This study confirms the vectorial capacity of culicine mosquitoes for T. thomasbancrofti, a trypanosome related to T. avium, and suggests that prediuresis might be an effective mode of trypanosome transmission.
Zobrazit více v PubMed
Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A.S., Berney C., Brown M.W., Burki F., Cárdenas P., et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019;66:4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC
Danilewsky B. Zur parasitologie des blutes. Biologisches Zentralblatt. 1885;5:529–537.
Zídková L., Čepicka I., Szabová J., Svobodová M. Biodiversity of avian trypanosomes. Infect. Geneti. Evol. 2012;12:102–112. doi: 10.1016/j.meegid.2011.10.022. PubMed DOI
Kučera J. Incidence and some ecological aspects of avian trypanosomes in Czechoslovakia. Folia Parasitol. 1983;30:209–222. PubMed
Kirkpatrick C.E., Suthers H.B. Epizootiology of blood parasite infections in passerine birds from central New Jersey. Can J. Zool. 1988;66:2374–2382. doi: 10.1139/z88-352. DOI
Sehgal R.N., Jones H.I., Smith T.B. Host specificity and incidence of Trypanosoma in some African rainforest birds: A molecular approach. Mol. Ecol. 2001;10:2319–2327. doi: 10.1046/j.1365-294X.2001.01339.x. PubMed DOI
Zamora-Vilchis I., Williams S.E., Johnson C.N. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. PLoS ONE. 2012;7:e39208. doi: 10.1371/journal.pone.0039208. PubMed DOI PMC
Oakgrove K.S., Harrigan R.J., Loiseau C., Guers S., Seppi B., Sehgal R.N. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Internat. J. Parasitol. 2014;44:717–727. doi: 10.1016/j.ijpara.2014.04.011. PubMed DOI
Cooper C., Thompson R.A., Botero A., Kristancic A., Peacock C., Kirilak Y., Clode P.L. A comparative molecular and 3-dimensional structural investigation into cross-continental and novel avian Trypanosoma spp. in Australia. Parasites Vectors. 2017;10:234. doi: 10.1186/s13071-017-2173-x. PubMed DOI PMC
Bennett G.F. On the specificity and transmission of some avian trypanosomes. Can. J. Zool. 1961;39:17–33. doi: 10.1139/z61-003. DOI
Votýpka J., Oborník M., Volf P., Svobodová M., Lukeš J. Trypanosoma avium of raptors (Falconiformes): Phylogeny and identification of vectors. Parasitology. 2002;125:253–263. doi: 10.1017/S0031182002002093. PubMed DOI
Votýpka J., Svobodová M. Trypanosoma avium: Experimental transmission from black flies to canaries. Parasitol. Res. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI
Kato H., Gomez E.A., Cáceres A.G., Vargas F., Mimori T., Yamamoto K., Iwata H., Korenaga M., Velez L., Hashiguchi Y. Natural infections of man-biting sand flies by Leishmania and Trypanosoma species in the northern Peruvian Andes. Vector-Borne Zoonotic Dis. 2011;11:515–521. doi: 10.1089/vbz.2010.0138. PubMed DOI
Svobodová M., Rádrová J. Phlebotomine Sandflies-Potential Vectors of Avian Trypanosomes. Acta Protozool. 2018;57 doi: 10.4467/16890027AP.18.005.8399. DOI
Baker J.R. Studies on Trypanosoma avium Danilewsky 1885 II. Transmission by Ornithomyia avicularia L. Parasitology. 1956;46:321–334. doi: 10.1017/S0031182000026536. PubMed DOI
Miltgen F., Landau I. Culicoides nubeculosus, an experimental vector of a new trypanosome from psittaciforms: Trypanosoma barkeri n. sp. Ann. Parasitol. Hum. Com. 1981;57:423–428. doi: 10.1051/parasite/1982575423. PubMed DOI
Svobodová M., Dolnik O.V., Čepička I., Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasites Vectors. 2017;10:1–9. doi: 10.1186/s13071-017-2158-9. PubMed DOI PMC
Bernotienė R., Iezhova T.A., Bukauskaitė D., Chagas C.R.F., Kazak M., Valkiūnas G. Development of Trypanosoma everetti in Culicoides biting midges. Acta Trop. 2020;210:105555. doi: 10.1016/j.actatropica.2020.105555. PubMed DOI
Votýpka J., Szabová J., Rádrová J., Zídková L., Svobodová M. Trypanosoma culicavium sp. nov., an avian trypanosome transmitted by Culex mosquitoes. Int. J. Syst. Evol. Micr. 2012;62:745–754. doi: 10.1099/ijs.0.032110-0. PubMed DOI
David A., Nair C.P. Observations on a natural (cryptic) Infection of trypanosomes in sparrows (Passer domesticus Linnaeus) Part I. Susceptibility of birds and mammals to the trypanosomes. Indian J. Malariol. 1955;9:95–98. PubMed
Bennett G.F. Trypanosoma avium Danilewsky in the avian host. Can. J. Zool. 1970;48:803–807. doi: 10.1139/z70-140. DOI
Chatterjee D.K. Development of T. avium bakeri Chatterjee and Ray, 1971 in Aedes albopictus and its subsequent transmission to birds. Indian J. Parasitol. 1977;1:97–100.
Svobodova M., Volf P., Votýpka J. Trypanosomatids in ornithophilic bloodsucking Diptera. Med. Vet. Entomol. 2015;29:444–447. doi: 10.1111/mve.12130. PubMed DOI
Šlapeta J., Morin-Adeline V., Thompson P., Mcdonell D., Shiels M., Gilchrist K., Votýpka J., Vogelnest L. Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia) Parasitology. 2016;143:1012–1025. doi: 10.1017/S0031182016000329. PubMed DOI
Kramář J. Fauna ČSR-Komáři Bodaví—Culicinae. Academia; Prague, Czech Republic: 1958.
Maslov D.A., Lukeš J., Jirku M., Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: Implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 1996;75:197–205. doi: 10.1016/0166-6851(95)02526-X. PubMed DOI
Votýpka J., Rádrová J., Skalický T., Jirků M., Jirsová D., Mihalca A.D., Amico G., Petrželková K.J., Modrý D., Lukeš J. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Int. J. Parasitol. 2015;45:741–748. doi: 10.1016/j.ijpara.2015.06.005. PubMed DOI
Medlin L., Elwood H.J., Stickel S., Sogin M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–499. doi: 10.1016/0378-1119(88)90066-2. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 29 August 2021)]. Available online: https://www.R-project.org/
Desser S.S., McIver S.B., Jez D. Observations on the role of Simuliids and Culicids in the transmission of avian and anuran trypanosomes. Int. J. Parasitol. 1975;5:507–509. doi: 10.1016/0020-7519(75)90041-7. PubMed DOI
Briegel H., Rezzonico l. Concentration of host blood protein during feeding by anopheline mosquitoes (Diptera: Culicidae) J. Med. Ento. 1985;22:612–618. doi: 10.1093/jmedent/22.6.612. PubMed DOI
Mutero C.M., Mutinga M.J. Defecation by Anopheles arabiensis mosquitoes of host blood infected with live Trypanosoma congolense. Trop. Med. Parasitol. 1993;44:23–26. PubMed
Valkiūnas G., Bairlein F., Iezhova T.A., Dolnik O.V. Factors affecting the relapse of Haemoproteus belopolskyi infections and the parasitaemia of Trypanosoma spp. in a naturally infected European songbird, the blackcap (Sylvia atricapilla) Parasitol. Res. 2004;93:218–222. doi: 10.1007/s00436-004-1071-2. PubMed DOI
Chandenier J., Landau I., Baccam D. Experimental transmission of passeriform trypanosomes by Culicoides. Ann Parasitol. Hum. Comp. 1991;66:9–13. doi: 10.1051/parasite/19916619. DOI
Schoener E., Uebleis S., Cuk C., Nawratil M., Obwaller A.G., Zechmeister T., Lebl K., Rádrová J., Zittra C., Votýpka J., et al. Trypanosomatid parasites in Austrian mosquitoes. PLoS ONE. 2018;13:e0196052. doi: 10.1371/journal.pone.0196052. PubMed DOI PMC
Parasitic Protists: Diversity of Adaptations to a Parasitic Lifestyle
Avian Louse Flies and Their Trypanosomes: New Vectors, New Lineages and Host-Parasite Associations
Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors