Blood parasites (Trypanosoma, Leucocytozoon, Haemoproteus) in the Eurasian sparrowhawk (Accipiter nisus): diversity, incidence and persistence of infection at the individual level

. 2023 Jan 14 ; 16 (1) : 15. [epub] 20230114

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36641440

Grantová podpora
PROGRES Q43 Charles University, Faculty of Science
Cooperatio Biology Charles University, Faculty of Science
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education of the Czech Republic

Odkazy

PubMed 36641440
PubMed Central PMC9840293
DOI 10.1186/s13071-022-05623-x
PII: 10.1186/s13071-022-05623-x
Knihovny.cz E-zdroje

BACKGROUND: A high prevalence of parasites may result from life-long persistence of infection or from high reinfection rates. We have studied blood parasites in a breeding population of the accipitrid raptor, Eurasian sparrowhawk (Accipiter nisus), to determine parasite diversity and turnover. METHODS: During this 7-year study, 210 adult Eurasian sparrowhawks breeding in the city of Prague were checked for parasites using several diagnostic methods. RESULTS: In both female and male raptors, parasites of the genus Leucocytozoon were the most prevalent (92% and 85%, respectively) followed in decreasing order of prevalence by those of genus Trypanosoma (74% and 68%, respectively) and genus Haemoproteus (46% and 16%, respectively). The prevalence of all parasites increased with age in both sexes, with the females at each respective age having the higher prevalence. There was a positive association between Haemoproteus and Leucocytozoon infections. Persistence at the individual level was higher than incidence for Trypanosoma and Haemoproteus. In the case of Leucocytozoon and Trypanosoma, most individuals probably become infected in their first year of life or even before dispersal from the nest. The detected parasites belonged to Trypanosoma avium sensu stricto, Leucocytozoon sp. (haplotypes ACNI1 and ACNI3) and Leucocytozoon mathisi (haplotype ACNI4) and two new lineages of the Haemoproteus elani complex (ACCNIS6 and ACCNIS7). Detailed analysis of parasite lineages in individuals that were repeatedly sampled revealed lineage turnover that would otherwise remain hidden. Phylogenetic analysis revealed that the detected Haemoproteus belongs to a phylogenetically distant group whose taxonomic position requires further analysis. CONCLUSIONS: All three genera of blood parasites persist in infected individuals, thus enabling sustainability of vector transmission cycles. Prevalence increases with age; however, there is a high turnover of Leucocytozoon lineages. No clear evidence of parasite-induced mortality was found, and most of the individuals were infected early in life, particularly in the case of Leucocytozoon.

Zobrazit více v PubMed

Adl SM, Bass D, Lane CE, Lukes J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC

Rivero A, Gandon S. Evolutionary ecology of avian malaria: past to present. Trends Parasitol. 2018;34:712–726. doi: 10.1016/j.pt.2018.06.002. PubMed DOI

Dunn JC, Outlaw DC. Flying into the future: avian haemosporidians and the advancement of understanding host-parasite systems. Parasitology. 2019;146:1487–1489. doi: 10.1017/s003118201900057x. PubMed DOI

Galen SC, Borner J, Perkins SL, Weckstein JD. Phylogenomics from transcriptomic “bycatch” clarify the origins and diversity of avian trypanosomes in North America. PLoS ONE. 2020;15:e0240062. 10.1371/journal.pone.0240062. PubMed PMC

Pornpanom P, Salakij C, Prasopsom P, Lertwatcharasarakul P, Kasorndorkbua C, Santavakul M. Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitol Res. 2019;118:2419–2429. doi: 10.1007/s00436-019-06379-7. PubMed DOI

Santolikova A, Brzonova J, Cepicka I, Svobodova M. Avian louse flies and their trypanosomes: new vectors, new lineages and host-parasite associations. Microoorganisms. 2022;10:584. 10.3390/microorganisms10030584. PubMed PMC

Perez-Rodriguez A, de la Puente J, Onrubia A, Perez-Tris J. Molecular characterization of haemosporidian parasites from kites of the genus Milvus (Aves: Accipitridae) Int J Parasitol. 2013;43:381–387. doi: 10.1016/j.ijpara.2012.12.007. PubMed DOI

Harl J, Himmel T, Valkiunas G, Ilgunas M, Nedorost N, Matt J, et al. Avian haemosporidian parasites of accipitriform raptors. Malaria J. 2022;21:14. 10.1186/s12936-021-04019-z. PubMed PMC

Keller V, Herrando S, Voříšek P, Franch M, Kipson M, Milanesi P, et al. European breeding bird atlas 2: distribution, abundance and change. Barcelona: European Bird Census Council & Lynx Edicions; 2020.

Hudec K, Šťastný K, editors. Fauna of the Czech Republic, Birds 2/I. Prague: Academia; 2005.

Newton I. The sparrowhawk. Calton: T & AD Poyser; 1986.

Peirce MA, Marquiss M. Hematozoa of British birds VII. Hematozoa of raptors in Scotland with a description of Haemoproteus nisi sp. nov. from the sparrowhawk (Accipiter nisus) J Nat Hist. 1983;17:813–21. doi: 10.1080/00222938300770621. DOI

Ashford RW, Wyllie I, Newton I. Leucocytozoon toddi in British sparrowhawks Accipiter nisus: observations on the dynamics of infection. J Nat Hist. 1990;24:1101–1107. doi: 10.1080/00222939000770691. DOI

Sehgal RNM, Hull AC, Anderson NL, Valkiunas G, Markovets MJ, Kawamura S, et al. Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol. 2006;92:375–9. doi: 10.1645/ge-656r.1. PubMed DOI

Krone O, Waldenstrom J, Valkiunas G, Lessow O, Muller K, Iezhova TA, et al. Haemosporidian blood parasites in European birds of prey and owls. J Parasitol. 2008;94:709–715. doi: 10.1645/ge-1357.1. PubMed DOI

Tanigawa M, Sato Y, Ejiri H, Imura T, Chiba R, Yamamoto H, et al. Molecular identification of avian haemosporidia in wild birds and mosquitoes on Tsushima Island, Japan. J Vet Med Sci. 2013;75:319–326. doi: 10.1292/jvms.12-0359. PubMed DOI

Huang X, Huang D, Liang YG, Zhang LL, Yang G, Liu BY, et al. A new protocol for absolute quantification of haemosporidian parasites in raptors and comparison with current assays. Parasit Vectors. 2020;13:354. doi: 10.1186/s13071-020-04195-y. PubMed DOI PMC

Votypka J, Obornik M, Volf P, Svobodova M, Lukes J. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI

Zidkova L, Cepicka I, Szabova J, Svobodova M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12:102–112. doi: 10.1016/j.meegid.2011.10.022. PubMed DOI

Svobodova M, Weidinger K, Peske L, Volf P, Votypka J, Vorisek P. Trypanosomes and haemosporidia in the buzzard (Buteo buteo) and sparrowhawk (Accipiter nisus): factors affecting the prevalence of parasites. Parasitol Res. 2015;114:551–560. doi: 10.1007/s00436-014-4217-x. PubMed DOI

Peške L. Study of the sparrowhawk (Accipiter nisus) population in Prague: the possibility to compare the results of bird breeding distribution mapping and the actual situation. In: Štastný K, Bejček V, editors. Bird census and atlas studies. Proceedings of the 11th international conference on bird census and atlas work. Prague, Brno: Institute of Applied Ecology and Ecotechnology, Agricultural University, Czech Ornithological Society, Institute of Systematic & Ecological Biology; 1990. p. 99–102

Hardey J, Crick H, Wernham C, Riley H, Etheridge B, Thompson D. Raptors: a field guide for surveys and monitoring. Edinburgh: The Stationery Office; 2013.

Perkins SL, Schall JJ. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol. 2002;88:972–978. doi: 10.2307/3285540. PubMed DOI

Hellgren O, Waldenstrom J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802. doi: 10.1645/ge-184r1.90,797-802. PubMed DOI

Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, et al. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. P Roy Soc B Bio Sci. 2000;267:1583–9. doi: 10.1098/rspb.2000.1181. PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Freeman-Gallant CR, Taff CC. Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler: Implications for sexual selection. Oecologia. 2017;184:813–823. doi: 10.1007/s00442-017-3919-z. PubMed DOI

R Core Team. R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria; 2021. https://www.R-project.org/.

Valkiunas G, Sehgal RNM, Iezhova TA, Hull AC. Identification of Leucocytozoon toddi group (Haemosporida: Leucocytozoidae), with remarks on the species taxonomy of leucocytozoids. J Parasitol. 2010;96:170–177. doi: 10.1645/ge-2109.1. PubMed DOI

Ishak HD, Loiseau C, Hull AC, Sehgal RNM. Prevalence of blood parasites in migrating and wintering California hawks. J Raptor Res. 2010;44:215–223. doi: 10.3356/jrr-08-34.1. DOI

Peirce MA, Bennett GF, Bishop M. The hemoproteids of the avian order Falconiformes. J Nat Hist. 1990;24:1091–1100. doi: 10.1080/00222939000770681. DOI

Outlaw DC, Ricklefs RE. On the phylogenetic relationships of haemosporidian parasites from raptorial birds (Falconiformes and Strigiformes) J Parasitol. 2009;95:1171–1176. doi: 10.1645/ge-1982.1. PubMed DOI

Cerny O, Votypka J, Svobodova M. Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Med Vet Entomol. 2011;25:104–108. doi: 10.1111/j.1365-2915.2010.00875.x. PubMed DOI

Votypka J, Svobodova M. Trypanosoma avium: experimental transmission from black flies to canaries. Parasitol Res. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI

Fialova M, Santolikova A, Brotankova A, Brzonova J, Svobodova M. Complete life cycle of Trypanosoma thomasbancrofti, an avian trypanosome transmitted by culicine mosquitoes. Microorganisms. 2021 doi: 10.3390/microorganisms9102101. PubMed DOI PMC

Munoz E, Ferrer D, Molina R, Adlard RD. Prevalence of haematozoa in birds of prey in Catalonia, north-east Spain. Vet Rec. 1999;144:632–636. doi: 10.1136/vr.144.23.632. PubMed DOI

Hanel J, Dolezalova J, Stehlikova S, Modry D, Chudoba J, Synek P, et al. Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi. Parasitol Res. 2016;115:263–270. doi: 10.1007/s00436-015-4743-1. PubMed DOI

Lei BN, Amar A, Koeslag A, Gous TA, Tate GJ. Differential haemoparasite intensity between black sparrowhawk (Accipiter melanoleucus) morphs suggests an adaptive function for polymorphism. PLoS ONE. 2013 doi: 10.1371/journal.pone.0081607. PubMed DOI PMC

Newton I, Marquiss M. Sex-ratio among nestlings of the European sparrowhawk. Am Nat. 1979;113:309–315. doi: 10.1086/283390. DOI

Ashford RW, Green EE, Holmes PR, Lucas AJ. Leucocytozoon toddi in British sparrowhawks Accipiter nisus: patterns of infection in nestlings. J Nat Hist. 1991;25:269–277. doi: 10.1080/00222939100770191. DOI

Chakarov N, Linke B, Boerner M, Goesmann A, Kruger O, Hoffman JI. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol. 2015;24:1355–1363. doi: 10.1111/mec.13115. PubMed DOI

Svobodova M, Cibulkova M. Isospora sp. (Apicomplexa: Eimeriidae) of Icterine Warbler (Hippolais icterina, Passeriformes, Sylviidae): the possibility of parents to nestlings transmission. Acta Protozool. 1995;34:233–5.

Marzal A, Balbontin J, Reviriego M, Garcia-Longoria L, Relinque C, Hermosell IG, et al. A longitudinal study of age-related changes in Haemoproteus infection in a passerine bird. Oikos. 2016;125:1092–1099. doi: 10.1111/oik.02778. DOI

Newton I, Rothery P, Wyllie I. Age-related survival in female sparrowhawks Accipiter nisus. Ibis. 1997;139:25–30. doi: 10.1111/j.1474-919X.1997.tb04500.x. DOI

Cichon M, Sendecka J, Gustafsson L. Age-related decline in humoral immune function in Collared Flycatchers. J Evol Biol. 2003;16:1205–1210. doi: 10.1046/j.1420-9101.2003.00611.x. PubMed DOI

Palacios MG, Winkler DW, Klasing KC, Hasselquist D, Vleck CM. Consequences of immune system aging in nature: a study of immunosenescence costs in free-living Tree Swallows. Ecology. 2011;92:952–966. doi: 10.1890/10-0662.1. PubMed DOI

Svobodova M, Dolnik OV, Cepicka I, Radrova J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10:224. doi: 10.1186/s13071-017-2158-9. PubMed DOI PMC

Dirie MF, Ashford RW, Mungomba LM, Molyneux DH, Green EE. Avian trypanosomes in Simulium and sparrowhawks (Accipiter nisus) Parasitology. 1990;101:243–247. doi: 10.1017/s0031182000063290. PubMed DOI

van Rooyen J, Lalubin F, Glaizot O, Christe P. Avian haemosporidian persistence and co-infection in great tits at the individual level. Malaria J. 2013 doi: 10.1186/1475-2875-12-40. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace