Blood parasites (Trypanosoma, Leucocytozoon, Haemoproteus) in the Eurasian sparrowhawk (Accipiter nisus): diversity, incidence and persistence of infection at the individual level
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRES Q43
Charles University, Faculty of Science
Cooperatio Biology
Charles University, Faculty of Science
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministry of Education of the Czech Republic
PubMed
36641440
PubMed Central
PMC9840293
DOI
10.1186/s13071-022-05623-x
PII: 10.1186/s13071-022-05623-x
Knihovny.cz E-zdroje
- Klíčová slova
- Avian blood parasite, Birds of prey, Haemosporida, Parasite persistence, Raptor, Trypanosoma avium, Trypanosoma bennetti, Trypanosoma corvi,
- MeSH
- fylogeneze MeSH
- Haemosporida * genetika MeSH
- incidence MeSH
- některé rody čeledi Accipitridae * parazitologie MeSH
- nemoci ptáků * parazitologie MeSH
- prevalence MeSH
- protozoální infekce zvířat * parazitologie MeSH
- Trypanosoma * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: A high prevalence of parasites may result from life-long persistence of infection or from high reinfection rates. We have studied blood parasites in a breeding population of the accipitrid raptor, Eurasian sparrowhawk (Accipiter nisus), to determine parasite diversity and turnover. METHODS: During this 7-year study, 210 adult Eurasian sparrowhawks breeding in the city of Prague were checked for parasites using several diagnostic methods. RESULTS: In both female and male raptors, parasites of the genus Leucocytozoon were the most prevalent (92% and 85%, respectively) followed in decreasing order of prevalence by those of genus Trypanosoma (74% and 68%, respectively) and genus Haemoproteus (46% and 16%, respectively). The prevalence of all parasites increased with age in both sexes, with the females at each respective age having the higher prevalence. There was a positive association between Haemoproteus and Leucocytozoon infections. Persistence at the individual level was higher than incidence for Trypanosoma and Haemoproteus. In the case of Leucocytozoon and Trypanosoma, most individuals probably become infected in their first year of life or even before dispersal from the nest. The detected parasites belonged to Trypanosoma avium sensu stricto, Leucocytozoon sp. (haplotypes ACNI1 and ACNI3) and Leucocytozoon mathisi (haplotype ACNI4) and two new lineages of the Haemoproteus elani complex (ACCNIS6 and ACCNIS7). Detailed analysis of parasite lineages in individuals that were repeatedly sampled revealed lineage turnover that would otherwise remain hidden. Phylogenetic analysis revealed that the detected Haemoproteus belongs to a phylogenetically distant group whose taxonomic position requires further analysis. CONCLUSIONS: All three genera of blood parasites persist in infected individuals, thus enabling sustainability of vector transmission cycles. Prevalence increases with age; however, there is a high turnover of Leucocytozoon lineages. No clear evidence of parasite-induced mortality was found, and most of the individuals were infected early in life, particularly in the case of Leucocytozoon.
Biomedical Center Faculty of Medicine in Pilsen Charles University Plzeň Czechia
Czech Society for Ornithology Prague Czechia
Department of Chemistry and Biochemistry Mendel University Brno Czechia
Department of Parasitology Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Adl SM, Bass D, Lane CE, Lukes J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC
Rivero A, Gandon S. Evolutionary ecology of avian malaria: past to present. Trends Parasitol. 2018;34:712–726. doi: 10.1016/j.pt.2018.06.002. PubMed DOI
Dunn JC, Outlaw DC. Flying into the future: avian haemosporidians and the advancement of understanding host-parasite systems. Parasitology. 2019;146:1487–1489. doi: 10.1017/s003118201900057x. PubMed DOI
Galen SC, Borner J, Perkins SL, Weckstein JD. Phylogenomics from transcriptomic “bycatch” clarify the origins and diversity of avian trypanosomes in North America. PLoS ONE. 2020;15:e0240062. 10.1371/journal.pone.0240062. PubMed PMC
Pornpanom P, Salakij C, Prasopsom P, Lertwatcharasarakul P, Kasorndorkbua C, Santavakul M. Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitol Res. 2019;118:2419–2429. doi: 10.1007/s00436-019-06379-7. PubMed DOI
Santolikova A, Brzonova J, Cepicka I, Svobodova M. Avian louse flies and their trypanosomes: new vectors, new lineages and host-parasite associations. Microoorganisms. 2022;10:584. 10.3390/microorganisms10030584. PubMed PMC
Perez-Rodriguez A, de la Puente J, Onrubia A, Perez-Tris J. Molecular characterization of haemosporidian parasites from kites of the genus Milvus (Aves: Accipitridae) Int J Parasitol. 2013;43:381–387. doi: 10.1016/j.ijpara.2012.12.007. PubMed DOI
Harl J, Himmel T, Valkiunas G, Ilgunas M, Nedorost N, Matt J, et al. Avian haemosporidian parasites of accipitriform raptors. Malaria J. 2022;21:14. 10.1186/s12936-021-04019-z. PubMed PMC
Keller V, Herrando S, Voříšek P, Franch M, Kipson M, Milanesi P, et al. European breeding bird atlas 2: distribution, abundance and change. Barcelona: European Bird Census Council & Lynx Edicions; 2020.
Hudec K, Šťastný K, editors. Fauna of the Czech Republic, Birds 2/I. Prague: Academia; 2005.
Newton I. The sparrowhawk. Calton: T & AD Poyser; 1986.
Peirce MA, Marquiss M. Hematozoa of British birds VII. Hematozoa of raptors in Scotland with a description of Haemoproteus nisi sp. nov. from the sparrowhawk (Accipiter nisus) J Nat Hist. 1983;17:813–21. doi: 10.1080/00222938300770621. DOI
Ashford RW, Wyllie I, Newton I. Leucocytozoon toddi in British sparrowhawks Accipiter nisus: observations on the dynamics of infection. J Nat Hist. 1990;24:1101–1107. doi: 10.1080/00222939000770691. DOI
Sehgal RNM, Hull AC, Anderson NL, Valkiunas G, Markovets MJ, Kawamura S, et al. Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol. 2006;92:375–9. doi: 10.1645/ge-656r.1. PubMed DOI
Krone O, Waldenstrom J, Valkiunas G, Lessow O, Muller K, Iezhova TA, et al. Haemosporidian blood parasites in European birds of prey and owls. J Parasitol. 2008;94:709–715. doi: 10.1645/ge-1357.1. PubMed DOI
Tanigawa M, Sato Y, Ejiri H, Imura T, Chiba R, Yamamoto H, et al. Molecular identification of avian haemosporidia in wild birds and mosquitoes on Tsushima Island, Japan. J Vet Med Sci. 2013;75:319–326. doi: 10.1292/jvms.12-0359. PubMed DOI
Huang X, Huang D, Liang YG, Zhang LL, Yang G, Liu BY, et al. A new protocol for absolute quantification of haemosporidian parasites in raptors and comparison with current assays. Parasit Vectors. 2020;13:354. doi: 10.1186/s13071-020-04195-y. PubMed DOI PMC
Votypka J, Obornik M, Volf P, Svobodova M, Lukes J. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI
Zidkova L, Cepicka I, Szabova J, Svobodova M. Biodiversity of avian trypanosomes. Infect Genet Evol. 2012;12:102–112. doi: 10.1016/j.meegid.2011.10.022. PubMed DOI
Svobodova M, Weidinger K, Peske L, Volf P, Votypka J, Vorisek P. Trypanosomes and haemosporidia in the buzzard (Buteo buteo) and sparrowhawk (Accipiter nisus): factors affecting the prevalence of parasites. Parasitol Res. 2015;114:551–560. doi: 10.1007/s00436-014-4217-x. PubMed DOI
Peške L. Study of the sparrowhawk (Accipiter nisus) population in Prague: the possibility to compare the results of bird breeding distribution mapping and the actual situation. In: Štastný K, Bejček V, editors. Bird census and atlas studies. Proceedings of the 11th international conference on bird census and atlas work. Prague, Brno: Institute of Applied Ecology and Ecotechnology, Agricultural University, Czech Ornithological Society, Institute of Systematic & Ecological Biology; 1990. p. 99–102
Hardey J, Crick H, Wernham C, Riley H, Etheridge B, Thompson D. Raptors: a field guide for surveys and monitoring. Edinburgh: The Stationery Office; 2013.
Perkins SL, Schall JJ. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol. 2002;88:972–978. doi: 10.2307/3285540. PubMed DOI
Hellgren O, Waldenstrom J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802. doi: 10.1645/ge-184r1.90,797-802. PubMed DOI
Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, et al. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. P Roy Soc B Bio Sci. 2000;267:1583–9. doi: 10.1098/rspb.2000.1181. PubMed DOI PMC
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Freeman-Gallant CR, Taff CC. Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler: Implications for sexual selection. Oecologia. 2017;184:813–823. doi: 10.1007/s00442-017-3919-z. PubMed DOI
R Core Team. R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria; 2021. https://www.R-project.org/.
Valkiunas G, Sehgal RNM, Iezhova TA, Hull AC. Identification of Leucocytozoon toddi group (Haemosporida: Leucocytozoidae), with remarks on the species taxonomy of leucocytozoids. J Parasitol. 2010;96:170–177. doi: 10.1645/ge-2109.1. PubMed DOI
Ishak HD, Loiseau C, Hull AC, Sehgal RNM. Prevalence of blood parasites in migrating and wintering California hawks. J Raptor Res. 2010;44:215–223. doi: 10.3356/jrr-08-34.1. DOI
Peirce MA, Bennett GF, Bishop M. The hemoproteids of the avian order Falconiformes. J Nat Hist. 1990;24:1091–1100. doi: 10.1080/00222939000770681. DOI
Outlaw DC, Ricklefs RE. On the phylogenetic relationships of haemosporidian parasites from raptorial birds (Falconiformes and Strigiformes) J Parasitol. 2009;95:1171–1176. doi: 10.1645/ge-1982.1. PubMed DOI
Cerny O, Votypka J, Svobodova M. Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Med Vet Entomol. 2011;25:104–108. doi: 10.1111/j.1365-2915.2010.00875.x. PubMed DOI
Votypka J, Svobodova M. Trypanosoma avium: experimental transmission from black flies to canaries. Parasitol Res. 2004;92:147–151. doi: 10.1007/s00436-003-1034-z. PubMed DOI
Fialova M, Santolikova A, Brotankova A, Brzonova J, Svobodova M. Complete life cycle of Trypanosoma thomasbancrofti, an avian trypanosome transmitted by culicine mosquitoes. Microorganisms. 2021 doi: 10.3390/microorganisms9102101. PubMed DOI PMC
Munoz E, Ferrer D, Molina R, Adlard RD. Prevalence of haematozoa in birds of prey in Catalonia, north-east Spain. Vet Rec. 1999;144:632–636. doi: 10.1136/vr.144.23.632. PubMed DOI
Hanel J, Dolezalova J, Stehlikova S, Modry D, Chudoba J, Synek P, et al. Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi. Parasitol Res. 2016;115:263–270. doi: 10.1007/s00436-015-4743-1. PubMed DOI
Lei BN, Amar A, Koeslag A, Gous TA, Tate GJ. Differential haemoparasite intensity between black sparrowhawk (Accipiter melanoleucus) morphs suggests an adaptive function for polymorphism. PLoS ONE. 2013 doi: 10.1371/journal.pone.0081607. PubMed DOI PMC
Newton I, Marquiss M. Sex-ratio among nestlings of the European sparrowhawk. Am Nat. 1979;113:309–315. doi: 10.1086/283390. DOI
Ashford RW, Green EE, Holmes PR, Lucas AJ. Leucocytozoon toddi in British sparrowhawks Accipiter nisus: patterns of infection in nestlings. J Nat Hist. 1991;25:269–277. doi: 10.1080/00222939100770191. DOI
Chakarov N, Linke B, Boerner M, Goesmann A, Kruger O, Hoffman JI. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol. 2015;24:1355–1363. doi: 10.1111/mec.13115. PubMed DOI
Svobodova M, Cibulkova M. Isospora sp. (Apicomplexa: Eimeriidae) of Icterine Warbler (Hippolais icterina, Passeriformes, Sylviidae): the possibility of parents to nestlings transmission. Acta Protozool. 1995;34:233–5.
Marzal A, Balbontin J, Reviriego M, Garcia-Longoria L, Relinque C, Hermosell IG, et al. A longitudinal study of age-related changes in Haemoproteus infection in a passerine bird. Oikos. 2016;125:1092–1099. doi: 10.1111/oik.02778. DOI
Newton I, Rothery P, Wyllie I. Age-related survival in female sparrowhawks Accipiter nisus. Ibis. 1997;139:25–30. doi: 10.1111/j.1474-919X.1997.tb04500.x. DOI
Cichon M, Sendecka J, Gustafsson L. Age-related decline in humoral immune function in Collared Flycatchers. J Evol Biol. 2003;16:1205–1210. doi: 10.1046/j.1420-9101.2003.00611.x. PubMed DOI
Palacios MG, Winkler DW, Klasing KC, Hasselquist D, Vleck CM. Consequences of immune system aging in nature: a study of immunosenescence costs in free-living Tree Swallows. Ecology. 2011;92:952–966. doi: 10.1890/10-0662.1. PubMed DOI
Svobodova M, Dolnik OV, Cepicka I, Radrova J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors. 2017;10:224. doi: 10.1186/s13071-017-2158-9. PubMed DOI PMC
Dirie MF, Ashford RW, Mungomba LM, Molyneux DH, Green EE. Avian trypanosomes in Simulium and sparrowhawks (Accipiter nisus) Parasitology. 1990;101:243–247. doi: 10.1017/s0031182000063290. PubMed DOI
van Rooyen J, Lalubin F, Glaizot O, Christe P. Avian haemosporidian persistence and co-infection in great tits at the individual level. Malaria J. 2013 doi: 10.1186/1475-2875-12-40. PubMed DOI PMC