Trypanosoma
Dotaz
Zobrazit nápovědu
- MeSH
- antigeny analýza MeSH
- antisérum MeSH
- Chagasova nemoc imunologie MeSH
- chemická precipitace MeSH
- chemické techniky analytické MeSH
- elektroforéza MeSH
- fluorescenční protilátková technika MeSH
- gelová chromatografie MeSH
- imunoelektroforéza MeSH
- komplement fixační testy MeSH
- lidé MeSH
- Trypanosoma imunologie MeSH
- Check Tag
- lidé MeSH
BACKGROUND: Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW: This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS: The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE: As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
- MeSH
- biologický transport MeSH
- lidé MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální dynamika MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2 O2 ) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2 O2 . Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2 O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
- MeSH
- hmyz účinky léků růst a vývoj metabolismus MeSH
- katalasa metabolismus MeSH
- peroxid vodíku farmakologie MeSH
- Trypanosoma brucei brucei účinky léků metabolismus MeSH
- Trypanosoma účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently, based on a limited morphological characterisation and partial 18S rRNA gene sequence, Jiang et al. (2019) described Trypanosoma micropteri Jiang, Lu, Du, Wang, Hu, Su et Li, 2019 as a new pathogen of farmed fish. Here we provide evidence based on the expanded sequence dataset, morphology and experimental infections that this trypanosome does not warrant the establishment as a new species, because it is conspecific with the long-term known Trypanosoma carassii Mitrophanow, 1883, a common haemoflagellate parasite of freshwater fish. The former taxon thus becomes a new junior synonym of T. carassii.
- MeSH
- fylogeneze MeSH
- RNA ribozomální 18S genetika MeSH
- ryby parazitologie MeSH
- sladká voda MeSH
- Trypanosoma * genetika MeSH
- trypanozomiáza * epidemiologie veterinární parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.
- MeSH
- buněčné jádro MeSH
- buněčný cyklus MeSH
- mitochondrie MeSH
- stadia vývoje MeSH
- Trypanosoma brucei brucei * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.
- MeSH
- biologický transport fyziologie MeSH
- buněčné linie MeSH
- energetický metabolismus fyziologie MeSH
- kyselina pyrohroznová metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- proteiny přenášející anionty metabolismus MeSH
- sekvence aminokyselin MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH