Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26150448
PubMed Central
PMC4542238
DOI
10.1128/aem.01487-15
PII: AEM.01487-15
Knihovny.cz E-zdroje
- MeSH
- DNA bakterií chemie genetika MeSH
- Enterobacteriaceae klasifikace genetika izolace a purifikace fyziologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- moucha tse-tse mikrobiologie fyziologie MeSH
- Phthiraptera mikrobiologie fyziologie MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA bakterií MeSH
Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host's "milk glands" or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, "Candidatus Arsenophonus melophagi," we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, "Ca. Arsenophonus melophagi" is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands.
Zobrazit více v PubMed
Baumann P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189. doi:10.1146/annurev.micro.59.030804.121041. PubMed DOI
McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. doi:10.1038/nrmicro2670. PubMed DOI
Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119. PubMed DOI
Petersen FT, Meier R, Kutty SN, Wiegmann BM. 2007. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Mol Phylogenet Evol 45:111–122. doi:10.1016/j.ympev.2007.04.023. PubMed DOI
Meier R, Kotrba M, Ferrar P. 1999. Ovoviviparity and viviparity in Diptera. Biol Rev 74:199–258. doi:10.1017/S0006323199005320. DOI
Lenoble BJ, Denlinger DL. 1982. The milk gland of the sheep ked, Melophagus ovinus: a comparison with Glossina. J Insect Physiol 28:165–172. doi:10.1016/0022-1910(82)90124-X. DOI
Aksoy S. 1995. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of mycetocyte associated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol 45:848–851. doi:10.1099/00207713-45-4-848. PubMed DOI
Cheng Q, Aksoy S. 1999. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 8:125–132. doi:10.1046/j.1365-2583.1999.810125.x. PubMed DOI
Dale C, Maudlin I. 1999. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49:267–275. doi:10.1099/00207713-49-1-267. PubMed DOI
Aksoy S, Chen X, Hypša V. 1997. Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae). Insect Mol Biol 6:183–190. doi:10.1111/j.1365-2583.1997.tb00086.x. PubMed DOI
Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV. 2010. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 277:2389–2397. doi:10.1098/rspb.2010.0364. PubMed DOI PMC
Nogge G. 1976. Sterility in tsetse flies (Glossina morsitans Westwood) caused by loss of symbionts. Experientia 32:995–996. doi:10.1007/BF01933932. PubMed DOI
Nogge G. 1981. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous arthropods. Parasitology 82:101–104.
Snyder AK, McLain C, Rio RV. 2012. The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 78:7792–7797. doi:10.1128/AEM.02052-12. PubMed DOI PMC
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. 2014. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol 80:5844–5853. doi:10.1128/AEM.01150-14. PubMed DOI PMC
Doudoumis V, Alam U, Aksoy E, Abd-Alla AMM, Tsiamis G, Brelsfoard C, Aksoy S, Bourtzis K. 2013. Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J Invertebr Pathol 112:S94–S103. doi:10.1016/j.jip.2012.05.010. PubMed DOI PMC
Lindh J, Lehane M. 2011. The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie Van Leeuwenhoek 99:711–720. doi:10.1007/s10482-010-9546-x. PubMed DOI
Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, Aksoy S, Caccone A. 2014. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 80:4301–4312. doi:10.1128/AEM.00079-14. PubMed DOI PMC
Chrudimský T, Husník F, Nováková E, Hypsa V. 2012. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS One 7:e40354. doi:10.1371/journal.pone.0040354. PubMed DOI PMC
Nováková E, Hypša V. 2007. A new Sodalis lineage from blood-sucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol Lett 269:131–135. doi:10.1111/j.1574-6968.2006.00620.x. PubMed DOI
Nováková E, Hypsa V, Moran NA. 2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143. doi:10.1186/1471-2180-9-143. PubMed DOI PMC
Small RW. 2005. A review of Melophagus ovinus (L.), the sheep ked. Vet Parasitol 130:141–155. doi:10.1016/j.vetpar.2005.03.005. PubMed DOI
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925. PubMed PMC
Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH. 2006. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110. doi:10.1128/AEM.00731-06. PubMed DOI PMC
O'Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM. 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89:2699–2702. doi:10.1073/pnas.89.7.2699. PubMed DOI PMC
Norman AF, Regnery R, Jameson P, Greene C, Krause DC. 1995. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol 33:1797–1803. PubMed PMC
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi:10.1101/gr.074492.107. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2. PubMed DOI
Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. doi:10.1093/nar/gkr1044. PubMed DOI PMC
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119. PubMed DOI PMC
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579. doi:10.1093/bioinformatics/btq683. PubMed DOI
Lerat E, Daubin V, Moran NA. 2003. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol 1:e19. PubMed PMC
Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH. 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283. doi:10.1093/nar/30.1.281. PubMed DOI PMC
Katoh K, Standley DM. 2014. MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146. doi:10.1007/978-1-62703-646-7_8. PubMed DOI
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259. PubMed DOI
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi:10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. doi:10.1038/nmeth.2109. PubMed DOI PMC
Galtier N, Gouy M. 1998. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol 15:871–879. doi:10.1093/oxfordjournals.molbev.a025991. PubMed DOI
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180. PubMed DOI
Dale JM, Popescu L, Karp PD. 2010. Machine learning methods for metabolic pathway prediction. BMC Bioinformatics 11:15. doi:10.1186/1471-2105-11-15. PubMed DOI PMC
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988. PubMed DOI PMC
Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Schroeder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD. 2013. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:D605–D612. doi:10.1093/nar/gks1027. PubMed DOI PMC
Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774. doi:10.1073/pnas.0911476107. PubMed DOI PMC
Hosokawa T, Nikoh N, Koga R, Sato M, Tanahashi M, Meng XY, Fukatsu T. 2012. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J 6:577–587. doi:10.1038/ismej.2011.125. PubMed DOI PMC
Ries E. 1931. Die Symbiose der Läuse und Federlinge. Zeitschrift für Morphologie und Ökologie der Tiere 20:233–367.
Aksoy S, Pourhosseeini AA, Chow A. 1995. Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. lnsect Mol Biol 4:5–22. PubMed
Attardo GM, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S. 2008. Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol 54:1236–1242. doi:10.1016/j.jinsphys.2008.06.008. PubMed DOI PMC
Balmand S, Lohs C, Aksoy S, Heddi A. 2013. Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 112:S116–S122. doi:10.1016/j.jip.2012.04.002. PubMed DOI PMC
Noller W. 1916. Beitrag zur Flecktyphusubertragung durch Lause. Klin Wochenschr 28:778.
Bemis DA, Kania SA. 2007. Isolation of Bartonella sp from sheep blood. Emerg Infect Dis 13:1565–1567. doi:10.3201/eid1310.070570. PubMed DOI PMC
Halos L, Jamal T, Maillard R, Girard B, Guillot J, Chomel B, Vayssier-Taussat M, Boulouis HJ. 2004. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Appl Environ Microbiol 70:6302–6305. doi:10.1128/AEM.70.10.6302-6305.2004. PubMed DOI PMC
Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407. doi:10.1038/ng986. PubMed DOI
Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, Obame Nkoghe J, Rahola N, Tortosa P. 2014. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol 23:2105–2117. doi:10.1111/mec.12704. PubMed DOI
Puchta O. 1955. Experimentelle Untersuchungen uber die Bedeutung der symbiose der Kleiderlaus Pediculus vestimenti Burm. Z Parastenkd 17:1–40. (In German.) PubMed
Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. 2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A 111:10257–10262. doi:10.1073/pnas.1409284111. PubMed DOI PMC
Belda E, Moya A, Bentley S, Silva FJ. 2010. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 11:449. doi:10.1186/1471-2164-11-449. PubMed DOI PMC
Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, Aksoy S. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156. PubMed PMC
Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JMC, Ribeiro JMC, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li H-M, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, et al. . 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 107:12168–12173. doi:10.1073/pnas.1003379107. PubMed DOI PMC
Hansen AK, Moran NA. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496. doi:10.1111/mec.12421. PubMed DOI
Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. 2013. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol 79:2952–2961. doi:10.1128/AEM.03814-12. PubMed DOI PMC
Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K. 2012. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol 12:1717–1723. doi:10.1016/j.meegid.2012.06.009. PubMed DOI
Billeter SA, Hayman DTS, Peel AJ, Baker K, Wood JLN, Cunningham A, Suu-Ire R, Dittmar K, Kosoy MY. 2012. Bartonella species in bat flies (Diptera: Nycteribiidae) from western Africa. Parasitology 139:324–329. doi:10.1017/S0031182011002113. PubMed DOI
Reeves WK, Loftis AD, Gore JA, Dasch GA. 2005. Molecular evidence for novel Bartonella species in Trichobius major (Diptera: Streblidae) and Cimex adjunctus (Hemiptera: Cimicidae) from two southeastern bat caves, USA. J Vector Ecol 30:339–341. PubMed
Cheng Q, Ruel TD, Zhou W, Moloo SK, Majiwa P, O'Neill SL, Aksoy S. 2000. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 14:44–50. doi:10.1046/j.1365-2915.2000.00202.x. PubMed DOI
Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K. 2012. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 12:S3. doi:10.1186/1471-2180-12-S1-S3. PubMed DOI PMC
Reference deleted.
Dale C, Young SA, Haydon DT, Welburn SC. 2001. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci U S A 98:1883–1888. doi:10.1073/pnas.98.4.1883. PubMed DOI PMC
Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156. doi:10.1101/gr.4106106. PubMed DOI PMC
Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite
Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology
Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies
BioProject
PRJEB9958