The 29-nucleotide deletion in SARS-CoV: truncated versions of ORF8 are under purifying selection

. 2023 Jul 10 ; 24 (1) : 387. [epub] 20230710

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37430204

Grantová podpora
U54 MD007600 NIH HHS - United States

Odkazy

PubMed 37430204
PubMed Central PMC10332002
DOI 10.1186/s12864-023-09482-3
PII: 10.1186/s12864-023-09482-3
Knihovny.cz E-zdroje

BACKGROUND: Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002-2003) is encoded by the open reading frame 8 (ORF8). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8. This deletion cause splitting of ORF8 into two smaller ORFs, namely ORF8a and ORF8b. Functional consequences of this event are not entirely clear. RESULTS: Here, we performed evolutionary analyses of ORF8a and ORF8b genes and documented that in both cases the frequency of synonymous mutations was greater than that of nonsynonymous ones. These results suggest that ORF8a and ORF8b are under purifying selection, thus proteins translated from these ORFs are likely to be functionally important. Comparisons with several other SARS-CoV genes revealed that another accessory gene, ORF7a, has a similar ratio of nonsynonymous to synonymous mutations suggesting that ORF8a, ORF8b, and ORF7a are under similar selection pressure. CONCLUSIONS: Our results for SARS-CoV echo the known excess of deletions in the ORF7a-ORF7b-ORF8 complex of accessory genes in SARS-CoV-2. A high frequency of deletions in this gene complex might reflect recurrent searches in "functional space" of various accessory protein combinations that may eventually produce more advantageous configurations of accessory proteins similar to the fixed deletion in the SARS-CoV ORF8 gene.

Zobrazit více v PubMed

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC

Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, et al. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: genomic divergence and functional convergence. Pathogens. 2020;9(9):677. doi: 10.3390/pathogens9090677. PubMed DOI PMC

Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109. doi: 10.1016/j.antiviral.2014.06.013. PubMed DOI PMC

Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res. 2008;133(1):113–21. doi: 10.1016/j.virusres.2007.10.009. PubMed DOI PMC

Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020;286:198074. doi: 10.1016/j.virusres.2020.198074. PubMed DOI PMC

López-Muñoz AD, Kosik I, Holly J, Yewdell JW. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. Res Sq. 2021;pre–print:rs3rs–1162804. PubMed PMC

Su CM, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep. 2021;11(1):13464. doi: 10.1038/s41598-021-92941-2. PubMed DOI PMC

Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, et al. SARS–beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209–18. doi: 10.1038/nrmicro775. PubMed DOI PMC

Zhou Z, Huang C, Zhou Z, Huang Z, Su L, Kang S, et al. Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14+ monocytes. iScience. 2021;24(3):102187. doi: 10.1016/j.isci.2021.102187. PubMed DOI PMC

Tan Y, Schneider T, Leong M, Aravind L, Zhang D. Novel immunoglobulin domain proteins provide insights into evolution and pathogenesis of SARS-CoV-2-related viruses. mBio. 2020;11(3):e00760–00720. doi: 10.1128/mBio.00760-20. PubMed DOI PMC

Neches RY, Kyrpides NC, Ouzounis CA. Atypical divergence of SARS-CoV-2 Orf8 from Orf7a within the coronavirus lineage suggests potential stealthy viral strategies in immune evasion. mBio. 2021;12(1):e03014–03020. doi: 10.1128/mBio.03014-20. PubMed DOI PMC

Oostra M, de Haan CA, Rottier PJ. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J Virol. 2007;81(24):13876–88. doi: 10.1128/JVI.01631-07. PubMed DOI PMC

Sung SC, Chao CY, Jeng KS, Yang JY, Lai MM. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology. 2009;387(2):402–13. doi: 10.1016/j.virol.2009.02.021. PubMed DOI PMC

Mohammed MEA. The percentages of SARS-CoV-2 protein similarity and identity with SARS-CoV and BatCoV RaTG13 proteins can be used as indicators of virus origin. J Proteins Proteom. 2021;12(2):81–91. doi: 10.1007/s42485-021-00060-3. PubMed DOI PMC

Lau SK, Feng Y, Chen H, Luk HK, Yang WH, Li KS, et al. Severe Acute Respiratory Syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J Virol. 2015;89(20):10532–47. doi: 10.1128/JVI.01048-15. PubMed DOI PMC

Muth D, Corman VM, Roth H, Binger T, Dijkman R, Gottula LT, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8(1):15177. doi: 10.1038/s41598-018-33487-8. PubMed DOI PMC

Chen CY, Ping YH, Lee HC, Chen KH, Lee YM, Chan YJ, et al. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis. J Infect Dis. 2007;196(3):405–15. doi: 10.1086/519166. PubMed DOI PMC

Keng CT, Choi YW, Welkers MR, Chan DZ, Shen S, Gee Lim S, et al. The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology. 2006;354(1):132–42. doi: 10.1016/j.virol.2006.06.026. PubMed DOI PMC

Law PY, Liu YM, Geng H, Kwan KH, Waye MM, Ho YY. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett. 2006;580(15):3643–8. doi: 10.1016/j.febslet.2006.05.051. PubMed DOI PMC

Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276–8. doi: 10.1126/science.1087139. PubMed DOI

Chinese SARS, Molecular Epidemiology Consortium Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303(5664):1666–9. doi: 10.1126/science.1092002. PubMed DOI

Li WH. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993;36(1):96–9. doi: 10.1007/BF02407308. PubMed DOI

Pamilo P, Bianchi NO. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol. 1993;10(2):271–81. PubMed

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Herbst L, Fischer M. Ancestral sequence reconstruction with Maximum Parsimony. Bull Math Biol. 2017;79(12):2865–86. doi: 10.1007/s11538-017-0354-6. PubMed DOI

Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci U S A. 1998;95(21):12390–7. doi: 10.1073/pnas.95.21.12390. PubMed DOI PMC

Sneath PH, Sokal RR. Numerical taxonomy. Nature. 1962;193:855–60. doi: 10.1038/193855a0. PubMed DOI

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. PubMed

Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977;267(5608):275–6. doi: 10.1038/267275a0. PubMed DOI

Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496–503. doi: 10.1016/S0169-5347(00)01994-7. PubMed DOI PMC

Koonin EV, Rogozin IB. Getting positive about selection. Genome Biol. 2003;4(8):331. doi: 10.1186/gb-2003-4-8-331. PubMed DOI PMC

Holland LA, Kaelin EA, Maqsood R, Estifanos B, Wu LI, Varsani A, et al. An 81-nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020) J Virol. 2020;94(14):e00711–00720. doi: 10.1128/JVI.00711-20. PubMed DOI PMC

Michel CJ, Mayer C, Poch O, Thompson JD. Characterization of accessory genes in coronavirus genomes. Virol J. 2020;17(1):131. doi: 10.1186/s12985-020-01402-1. PubMed DOI PMC

Panzera Y, Calleros L, Goni N, Marandino A, Techera C, Grecco S, et al. Consecutive deletions in a unique uruguayan SARS-CoV-2 lineage evidence the genetic variability potential of accessory genes. PLoS ONE. 2022;17(2):e0263563. doi: 10.1371/journal.pone.0263563. PubMed DOI PMC

Wu A, Wang L, Zhou HY, Ji CY, Xia SZ, Cao Y, et al. One year of SARS-CoV-2 evolution. Cell Host Microbe. 2021;29(4):503–7. doi: 10.1016/j.chom.2021.02.017. PubMed DOI PMC

Su YCF, Anderson DE, Young BE, Linster M, Zhu F, Jayakumar J, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio. 2020;11(4):e01610–01620. doi: 10.1128/mBio.01610-20. PubMed DOI PMC

Young BE, Fong SW, Chan YH, Mak TM, Ang LW, Anderson DE, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603–11. doi: 10.1016/S0140-6736(20)31757-8. PubMed DOI PMC

Rogozin IB, Saura A, Bykova A, Brover V, Yurchenko V. Deletions across the SARS-CoV-2 genome: molecular mechanisms and putative functional consequences of deletions in accessory genes. Microorganisms. 2023;11(1):229. doi: 10.3390/microorganisms11010229. PubMed DOI PMC

Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of stop codons within prokaryotic protein-coding genes suggests frequent readthrough events. Int J Mol Sci. 2021;22(4):1876. doi: 10.3390/ijms22041876. PubMed DOI PMC

Belinky F, Sela I, Rogozin IB, Koonin EV. Crossing fitness valleys via double substitutions within codons. BMC Biol. 2019;17(1):105. doi: 10.1186/s12915-019-0727-4. PubMed DOI PMC

Posada D, Crandall KA. The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol. 2002;54(3):396–402. doi: 10.1007/s00239-001-0034-9. PubMed DOI

Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol. 2010;84(7):3134–46. doi: 10.1128/JVI.01394-09. PubMed DOI PMC

Turakhia Y, Thornlow B, Hinrichs A, McBroome J, Ayala N, Ye C, et al. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature. 2022;609(7929):994–7. doi: 10.1038/s41586-022-05189-9. PubMed DOI PMC

Ignatieva A, Hein J, Jenkins PA. Ongoing recombination in SARS-CoV-2 revealed through genealogical reconstruction. Mol Biol Evol. 2022;39(2):msac028. doi: 10.1093/molbev/msac028. PubMed DOI PMC

Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell. 2008;134(2):341–52. doi: 10.1016/j.cell.2008.05.042. PubMed DOI PMC

Shabalina SA, Spiridonov NA, Kashina A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 2013;41(4):2073–94. doi: 10.1093/nar/gks1205. PubMed DOI PMC

Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015;160(6):1111–24. doi: 10.1016/j.cell.2015.02.029. PubMed DOI PMC

Rogozin IB, Gertz EM, Baranov PV, Poliakov E, Schaffer AA. Genome-wide changes in protein translation efficiency are associated with autism. Genome Biol Evol. 2018;10(8):1902–19. doi: 10.1093/gbe/evy146. PubMed DOI PMC

Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol. 2008;383(2):281–91. doi: 10.1016/j.jmb.2008.08.012. PubMed DOI PMC

Quax TE, Claassens NJ, Soll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell. 2015;59(2):149–61. doi: 10.1016/j.molcel.2015.05.035. PubMed DOI PMC

Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–8. doi: 10.1126/science.1135308. PubMed DOI

Tuller T, Zur H. Multiple roles of the coding sequence 5’ end in gene expression regulation. Nucleic Acids Res. 2015;43(1):13–28. doi: 10.1093/nar/gku1313. PubMed DOI PMC

Postnikova OA, Uppal S, Huang W, Kane MA, Villasmil R, Rogozin IB, et al. The functional consequences of the novel ribosomal pausing site in SARS-CoV-2 spike glycoprotein RNA. Int J Mol Sci. 2021;22(12):6490. doi: 10.3390/ijms22126490. PubMed DOI PMC

Chamary JV, Hurst LD. Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Mol Biol Evol. 2004;21(6):1014–23. doi: 10.1093/molbev/msh087. PubMed DOI

Resch AM, Carmel L, Mariño-Ramírez L, Ogurtsov AY, Shabalina SA, Rogozin IB, et al. Widespread positive selection in synonymous sites of mammalian genes. Mol Biol Evol. 2007;24(8):1821–31. doi: 10.1093/molbev/msm100. PubMed DOI PMC

Akashi H, Eyre-Walker A. Translational selection and molecular evolution. Curr Opin Genet Dev. 1998;8(6):688–93. doi: 10.1016/S0959-437X(98)80038-5. PubMed DOI

Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915):725–31. doi: 10.1038/s41586-022-04823-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace