Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/16_019/0000759
European Regional Funds
18-15962S
Grant Agency of Czech Republic
Intramural Research Program
U.S. National Library of Medicine/NIH
Intramural Research Program
National Eye Institute/NIH
PubMed
33672790
PubMed Central
PMC7918605
DOI
10.3390/ijms22041876
PII: ijms22041876
Knihovny.cz E-zdroje
- Klíčová slova
- expression, in-fame stop codon, negative selection, population polymorphism, short-term evolution,
- MeSH
- Bacteria klasifikace genetika MeSH
- bakteriální proteiny klasifikace genetika MeSH
- bodová mutace MeSH
- fylogeneze MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- nesmyslný kodon * MeSH
- otevřené čtecí rámce genetika MeSH
- prokaryotické buňky metabolismus MeSH
- pseudogeny genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- selekce (genetika) MeSH
- terminační kodon genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- nesmyslný kodon * MeSH
- terminační kodon MeSH
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons-where an intermediate step is a nonsense substitution-show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
National Eye Institute National Institutes of Health Bethesda MD 20892 USA
Zobrazit více v PubMed
Koonin E.V., Rogozin I.B. Getting positive about selection. Genome Biol. 2003;4:331. doi: 10.1186/gb-2003-4-8-331. PubMed DOI PMC
Andersson J.O., Andersson S.G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 1999;9:664–671. doi: 10.1016/S0959-437X(99)00024-6. PubMed DOI
Goodhead I., Darby A.C. Taking the pseudo out of pseudogenes. Curr. Opin. Microbiol. 2015;23:102–109. doi: 10.1016/j.mib.2014.11.012. PubMed DOI
Holt K.E., Thomson N.R., Wain J., Langridge G.C., Hasan R., Bhutta Z.A., Quail M.A., Norbertczak H., Walker D., Simmonds M., et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genom. 2009;10:36. doi: 10.1186/1471-2164-10-36. PubMed DOI PMC
Lerat E., Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res. 2005;33:3125–3132. doi: 10.1093/nar/gki631. PubMed DOI PMC
Balakirev E.S., Ayala F.J. Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 2003;37:123–151. doi: 10.1146/annurev.genet.37.040103.103949. PubMed DOI
Schrimpe-Rutledge A.C., Jones M.B., Chauhan S., Purvine S.O., Sanford J.A., Monroe M.E., Brewer H.M., Payne S.H., Ansong C., Frank B.C., et al. Comparative omics-driven genome annotation refinement: Application across Yersiniae. PLoS ONE. 2012;7:e33903. doi: 10.1371/annotation/03110e8b-3e10-4334-9ff7-969c85ad25d8. PubMed DOI PMC
Mikkola R., Kurland C.G. Selection of laboratory wild-type phenotype from natural isolates of Escherichia coli in chemostats. Mol. Biol. Evol. 1992;9:394–402. PubMed
Bezerra A.R., Simoes J., Lee W., Rung J., Weil T., Gut I.G., Gut M., Bayes M., Rizzetto L., Cavalieri D., et al. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc. Natl. Acad. Sci. USA. 2013;110:11079–11084. doi: 10.1073/pnas.1302094110. PubMed DOI PMC
Ling J., O’Donoghue P., Söll D. Genetic code flexibility in microorganisms: Novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 2015;13:707–721. doi: 10.1038/nrmicro3568. PubMed DOI PMC
Pan T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 2013;47:121–137. doi: 10.1146/annurev-genet-111212-133522. PubMed DOI PMC
Ribas de Pouplana L., Santos M.A., Zhu J.H., Farabaugh P.J., Javid B. Protein mistranslation: Friend or foe? Trends Biochem. Sci. 2014;39:355–362. doi: 10.1016/j.tibs.2014.06.002. PubMed DOI
Javid B., Sorrentino F., Toosky M., Zheng W., Pinkham J.T., Jain N., Pan M., Deighan P., Rubin E.J. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl. Acad. Sci. USA. 2014;111:1132–1137. doi: 10.1073/pnas.1317580111. PubMed DOI PMC
Su H.W., Zhu J.H., Li H., Cai R.J., Ealand C., Wang X., Chen Y.X., Kayani M.U., Zhu T.F., Moradigaravand D., et al. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat. Microbiol. 2016;1:16147. doi: 10.1038/nmicrobiol.2016.147. PubMed DOI
Fan Y., Wu J., Ung M.H., De Lay N., Cheng C., Ling J. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res. 2015;43:1740–1748. doi: 10.1093/nar/gku1404. PubMed DOI PMC
Fredriksson A., Ballesteros M., Peterson C.N., Persson O., Silhavy T.J., Nystrom T. Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator sigmaS upon carbon starvation. Genes Dev. 2007;21:862–874. doi: 10.1101/gad.409407. PubMed DOI PMC
Fan Y., Evans C.R., Barber K.W., Banerjee K., Weiss K.J., Margolin W., Igoshin O.A., Rinehart J., Ling J. Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Mol. Cell. 2017;67:826–836. doi: 10.1016/j.molcel.2017.07.010. PubMed DOI PMC
Osawa S., Jukes T.H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 1989;28:271–278. doi: 10.1007/BF02103422. PubMed DOI
Ivanova N.N., Schwientek P., Tripp H.J., Rinke C., Pati A., Huntemann M., Visel A., Woyke T., Kyrpides N.C., Rubin E.M. Stop codon reassignments in the wild. Science. 2014;344:909–913. doi: 10.1126/science.1250691. PubMed DOI
Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016;26:2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI
Johnson D.B., Wang C., Xu J., Schultz M.D., Schmitz R.J., Ecker J.R., Wang L. Release factor one is nonessential in Escherichia coli. ACS Chem. Biol. 2012;7:1337–1344. doi: 10.1021/cb300229q. PubMed DOI PMC
Li L., Linning R.M., Kondo K., Honda B.M. Differential expression of individual suppressor tRNA(Trp) gene gene family members in vitro and in vivo in the nematode Caenorhabditis elegans. Mol. Cell Biol. 1998;18:703–709. doi: 10.1128/MCB.18.2.703. PubMed DOI PMC
Bienz M., Kubli E. Wild-type tRNATyrG reads the TMV RNA stop codon, but Q base-modified tRNATyrQ does not. Nature. 1981;294:188–190. doi: 10.1038/294188a0. PubMed DOI
Hoesl M.G., Budisa N. Recent advances in genetic code engineering in Escherichia coli. Curr. Opin. Biotechnol. 2012;23:751–757. doi: 10.1016/j.copbio.2011.12.027. PubMed DOI
Rother M., Krzycki J.A. Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea. 2010;2010:453642. doi: 10.1155/2010/453642. PubMed DOI PMC
Pasari N., Gupta M., Eqbal D., Yazdani S.S. Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment. Sci. Rep. 2019;9:6091. doi: 10.1038/s41598-019-42572-5. PubMed DOI PMC
Olendzenski L., Gogarten J.P. Evolution of genes and organisms: The tree/web of life in light of horizontal gene transfer. Ann. N. Y. Acad. Sci. 2009;1178:137–145. doi: 10.1111/j.1749-6632.2009.04998.x. PubMed DOI
Brocchieri L., Karlin S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 2005;33:3390–3400. doi: 10.1093/nar/gki615. PubMed DOI PMC
Kryazhimskiy S., Plotkin J.B. The population genetics of dN/dS. PLoS Genet. 2008;4:e1000304. doi: 10.1371/journal.pgen.1000304. PubMed DOI PMC
Rogozin I.B., Spiridonov A.N., Sorokin A.V., Wolf Y.I., Jordan I.K., Tatusov R.L., Koonin E.V. Purifying and directional selection in overlapping prokaryotic genes. Trends Genet. 2002;18:228–232. doi: 10.1016/S0168-9525(02)02649-5. PubMed DOI
Rogozin I.B., Belinky F., Pavlenko V., Shabalina S.A., Kristensen D.M., Koonin E.V. Evolutionary switches between two serine codon sets are driven by selection. Proc. Natl. Acad. Sci. USA. 2016;113:13109–13113. doi: 10.1073/pnas.1615832113. PubMed DOI PMC
Belinky F., Rogozin I.B., Koonin E.V. Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Sci. Rep. 2017;7:12422. doi: 10.1038/s41598-017-12619-6. PubMed DOI PMC
Belinky F., Sela I., Rogozin I.B., Koonin E.V. Crossing fitness valleys via double substitutions within codons. BMC Biol. 2019;17:105. doi: 10.1186/s12915-019-0727-4. PubMed DOI PMC
Belinky F., Babenko V.N., Rogozin I.B., Koonin E.V. Purifying and positive selection in the evolution of stop codons. Sci. Rep. 2018;8:9260. doi: 10.1038/s41598-018-27570-3. PubMed DOI PMC
Rogozin I.B., Pavlov Y.I., Bebenek K., Matsuda T., Kunkel T.A. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat. Immunol. 2001;2:530–536. doi: 10.1038/88732. PubMed DOI
Chan K., Gordenin D.A. Clusters of multiple mutations: Incidence and molecular mechanisms. Annu. Rev. Genet. 2015;49:243–267. doi: 10.1146/annurev-genet-112414-054714. PubMed DOI PMC
Chen J.M., Ferec C., Cooper D.N. Complex multiple-nucleotide substitution mutations causing human inherited disease reveal novel insights into the action of translesion synthesis DNA polymerases. Hum. Mutat. 2015;36:1034–1038. doi: 10.1002/humu.22831. PubMed DOI
Andersson S.G., Kurland C.G. Codon preferences in free-living microorganisms. Microbiol. Rev. 1990;54:198–210. doi: 10.1128/MR.54.2.198-210.1990. PubMed DOI PMC
Eggertsson G., Soll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 1988;52:354–374. doi: 10.1128/MR.52.3.354-374.1988. PubMed DOI PMC
Parker J. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 1989;53:273–298. doi: 10.1128/MR.53.3.273-298.1989. PubMed DOI PMC
Roth J.R. UGA nonsense mutations in Salmonella typhimurium. J. Bacteriol. 1970;102:467–475. doi: 10.1128/JB.102.2.467-475.1970. PubMed DOI PMC
Karow M.L., Rogers E.J., Lovett P.S., Piggot P.J. Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J. Bacteriol. 1998;180:4166–4170. doi: 10.1128/JB.180.16.4166-4170.1998. PubMed DOI PMC
Wan W., Tharp J.M., Liu W.R. Pyrrolysyl-tRNA synthetase: An ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta. 2014;1844:1059–1070. doi: 10.1016/j.bbapap.2014.03.002. PubMed DOI PMC
Kotini S.B., Peske F., Rodnina M.V. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res. 2015;43:6426–6438. doi: 10.1093/nar/gkv558. PubMed DOI PMC
Gonzalez-Flores J.N., Shetty S.P., Dubey A., Copeland P.R. The molecular biology of selenocysteine. Biomol. Concepts. 2013;4:349–365. doi: 10.1515/bmc-2013-0007. PubMed DOI PMC
Serio T.R., Lindquist S.L. [PSI+]: An epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 1999;15:661–703. doi: 10.1146/annurev.cellbio.15.1.661. PubMed DOI
Keeling K.M., Lanier J., Du M., Salas-Marco J., Gao L., Kaenjak-Angeletti A., Bedwell D.M. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA. 2004;10:691–703. doi: 10.1261/rna.5147804. PubMed DOI PMC
Kramarski L., Arbely E. Translational read-through promotes aggregation and shapes stop codon identity. Nucleic Acids Res. 2020;48:3747–3760. doi: 10.1093/nar/gkaa136. PubMed DOI PMC
Kondrashov F.A., Rogozin I.B., Wolf Y.I., Koonin E.V. Selection in the evolution of gene duplications. Genome Biol. 2002;3:RESEARCH0008. doi: 10.1186/gb-2002-3-2-research0008. PubMed DOI PMC
Rogozin I.B. Complexity of gene expression evolution after duplication: Protein dosage rebalancing. Genet. Res. Int. 2014;2014:516508. doi: 10.1155/2014/516508. PubMed DOI PMC
Liu Y., Zhou J., Omelchenko M.V., Beliaev A.S., Venkateswaran A., Stair J., Wu L., Thompson D.K., Xu D., Rogozin I.B., et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA. 2003;100:4191–4196. doi: 10.1073/pnas.0630387100. PubMed DOI PMC
Takahashi S. Positive and negative regulators of the metallothionein gene (review) Mol. Med. Rep. 2015;12:795–799. doi: 10.3892/mmr.2015.3459. PubMed DOI
Ojo D., Rodriguez D., Wei F., Bane A., Tang D. Downregulation of CYB5D2 is associated with breast cancer progression. Sci. Rep. 2019;9:6624. doi: 10.1038/s41598-019-43006-y. PubMed DOI PMC
Havis E., Duprez D. EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int. J. Mol. Sci. 2020;21:1664. doi: 10.3390/ijms21051664. PubMed DOI PMC
Peredo E.L., Cardon Z.G. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proc. Natl. Acad. Sci. USA. 2020;117:17438–17445. doi: 10.1073/pnas.1906904117. PubMed DOI PMC
Rogozin I.B., Gertz E.M., Baranov P.V., Poliakov E., Schaffer A.A. Genome-wide changes in protein translation efficiency are associated with autism. Genome Biol. Evol. 2018;10:1902–1919. doi: 10.1093/gbe/evy146. PubMed DOI PMC
Sokolowski M.B. Functional testing of ASD-associated genes. Proc. Natl. Acad. Sci. USA. 2020;117:26–28. doi: 10.1073/pnas.1919695117. PubMed DOI PMC
Ji X., Kember R.L., Brown C.D., Bucan M. Increased burden of deleterious variants in essential genes in autism spectrum disorder. Proc. Natl. Acad. Sci. USA. 2016;113:15054–15059. doi: 10.1073/pnas.1613195113. PubMed DOI PMC
Bobay L.M., Touchon M., Rocha E.P. Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. USA. 2014;111:12127–12132. doi: 10.1073/pnas.1405336111. PubMed DOI PMC
Czajkowski R. May the phage be with you? Prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front. Microbiol. 2019;10:138. doi: 10.3389/fmicb.2019.00138. PubMed DOI PMC
Li Y., Gordon E., Shean R.C., Idle A., Deng X., Greninger A.L., Delwart E. CrAssphage and its bacterial host in cat feces. Sci. Rep. 2021;11:815. doi: 10.1038/s41598-020-80076-9. PubMed DOI PMC
Baranov P.V., Gesteland R.F., Atkins J.F. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA. 2004;10:221–230. doi: 10.1261/rna.5122604. PubMed DOI PMC
Lainé S., Thouard A., Komar A.A., Rossignol J.M. Ribosome can resume the translation in both +1 or −1 frames after encountering an AGA cluster in Escherichia coli. Gene. 2008;412:95–101. doi: 10.1016/j.gene.2008.01.018. PubMed DOI
Kondrashov A.S., Rogozin I.B. Context of deletions and insertions in human coding sequences. Hum. Mutat. 2004;23:177–185. doi: 10.1002/humu.10312. PubMed DOI
Wei X., Zhang J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol. Evol. 2014;7:381–390. doi: 10.1093/gbe/evu294. PubMed DOI PMC
Kristensen D.M., Wolf Y.I., Koonin E.V. ATGC database and ATGC-COGs: An updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Res. 2017;45:D210–D218. doi: 10.1093/nar/gkw934. PubMed DOI PMC
Andersson J.O., Andersson S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 2001;18:829–839. doi: 10.1093/oxfordjournals.molbev.a003864. PubMed DOI
Ejigu G.F., Jung J. Review on the computational genome annotation of sequences obtained by next-generation sequencing. Biology. 2020;9:295. doi: 10.3390/biology9090295. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI