Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events

. 2021 Feb 14 ; 22 (4) : . [epub] 20210214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672790

Grantová podpora
CZ.02.1.01/16_019/0000759 European Regional Funds
18-15962S Grant Agency of Czech Republic
Intramural Research Program U.S. National Library of Medicine/NIH
Intramural Research Program National Eye Institute/NIH

Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons-where an intermediate step is a nonsense substitution-show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.

Zobrazit více v PubMed

Koonin E.V., Rogozin I.B. Getting positive about selection. Genome Biol. 2003;4:331. doi: 10.1186/gb-2003-4-8-331. PubMed DOI PMC

Andersson J.O., Andersson S.G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 1999;9:664–671. doi: 10.1016/S0959-437X(99)00024-6. PubMed DOI

Goodhead I., Darby A.C. Taking the pseudo out of pseudogenes. Curr. Opin. Microbiol. 2015;23:102–109. doi: 10.1016/j.mib.2014.11.012. PubMed DOI

Holt K.E., Thomson N.R., Wain J., Langridge G.C., Hasan R., Bhutta Z.A., Quail M.A., Norbertczak H., Walker D., Simmonds M., et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genom. 2009;10:36. doi: 10.1186/1471-2164-10-36. PubMed DOI PMC

Lerat E., Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res. 2005;33:3125–3132. doi: 10.1093/nar/gki631. PubMed DOI PMC

Balakirev E.S., Ayala F.J. Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 2003;37:123–151. doi: 10.1146/annurev.genet.37.040103.103949. PubMed DOI

Schrimpe-Rutledge A.C., Jones M.B., Chauhan S., Purvine S.O., Sanford J.A., Monroe M.E., Brewer H.M., Payne S.H., Ansong C., Frank B.C., et al. Comparative omics-driven genome annotation refinement: Application across Yersiniae. PLoS ONE. 2012;7:e33903. doi: 10.1371/annotation/03110e8b-3e10-4334-9ff7-969c85ad25d8. PubMed DOI PMC

Mikkola R., Kurland C.G. Selection of laboratory wild-type phenotype from natural isolates of Escherichia coli in chemostats. Mol. Biol. Evol. 1992;9:394–402. PubMed

Bezerra A.R., Simoes J., Lee W., Rung J., Weil T., Gut I.G., Gut M., Bayes M., Rizzetto L., Cavalieri D., et al. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc. Natl. Acad. Sci. USA. 2013;110:11079–11084. doi: 10.1073/pnas.1302094110. PubMed DOI PMC

Ling J., O’Donoghue P., Söll D. Genetic code flexibility in microorganisms: Novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 2015;13:707–721. doi: 10.1038/nrmicro3568. PubMed DOI PMC

Pan T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 2013;47:121–137. doi: 10.1146/annurev-genet-111212-133522. PubMed DOI PMC

Ribas de Pouplana L., Santos M.A., Zhu J.H., Farabaugh P.J., Javid B. Protein mistranslation: Friend or foe? Trends Biochem. Sci. 2014;39:355–362. doi: 10.1016/j.tibs.2014.06.002. PubMed DOI

Javid B., Sorrentino F., Toosky M., Zheng W., Pinkham J.T., Jain N., Pan M., Deighan P., Rubin E.J. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl. Acad. Sci. USA. 2014;111:1132–1137. doi: 10.1073/pnas.1317580111. PubMed DOI PMC

Su H.W., Zhu J.H., Li H., Cai R.J., Ealand C., Wang X., Chen Y.X., Kayani M.U., Zhu T.F., Moradigaravand D., et al. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat. Microbiol. 2016;1:16147. doi: 10.1038/nmicrobiol.2016.147. PubMed DOI

Fan Y., Wu J., Ung M.H., De Lay N., Cheng C., Ling J. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res. 2015;43:1740–1748. doi: 10.1093/nar/gku1404. PubMed DOI PMC

Fredriksson A., Ballesteros M., Peterson C.N., Persson O., Silhavy T.J., Nystrom T. Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator sigmaS upon carbon starvation. Genes Dev. 2007;21:862–874. doi: 10.1101/gad.409407. PubMed DOI PMC

Fan Y., Evans C.R., Barber K.W., Banerjee K., Weiss K.J., Margolin W., Igoshin O.A., Rinehart J., Ling J. Heterogeneity of stop codon readthrough in single bacterial cells and implications for population fitness. Mol. Cell. 2017;67:826–836. doi: 10.1016/j.molcel.2017.07.010. PubMed DOI PMC

Osawa S., Jukes T.H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 1989;28:271–278. doi: 10.1007/BF02103422. PubMed DOI

Ivanova N.N., Schwientek P., Tripp H.J., Rinke C., Pati A., Huntemann M., Visel A., Woyke T., Kyrpides N.C., Rubin E.M. Stop codon reassignments in the wild. Science. 2014;344:909–913. doi: 10.1126/science.1250691. PubMed DOI

Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016;26:2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI

Johnson D.B., Wang C., Xu J., Schultz M.D., Schmitz R.J., Ecker J.R., Wang L. Release factor one is nonessential in Escherichia coli. ACS Chem. Biol. 2012;7:1337–1344. doi: 10.1021/cb300229q. PubMed DOI PMC

Li L., Linning R.M., Kondo K., Honda B.M. Differential expression of individual suppressor tRNA(Trp) gene gene family members in vitro and in vivo in the nematode Caenorhabditis elegans. Mol. Cell Biol. 1998;18:703–709. doi: 10.1128/MCB.18.2.703. PubMed DOI PMC

Bienz M., Kubli E. Wild-type tRNATyrG reads the TMV RNA stop codon, but Q base-modified tRNATyrQ does not. Nature. 1981;294:188–190. doi: 10.1038/294188a0. PubMed DOI

Hoesl M.G., Budisa N. Recent advances in genetic code engineering in Escherichia coli. Curr. Opin. Biotechnol. 2012;23:751–757. doi: 10.1016/j.copbio.2011.12.027. PubMed DOI

Rother M., Krzycki J.A. Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea. 2010;2010:453642. doi: 10.1155/2010/453642. PubMed DOI PMC

Pasari N., Gupta M., Eqbal D., Yazdani S.S. Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment. Sci. Rep. 2019;9:6091. doi: 10.1038/s41598-019-42572-5. PubMed DOI PMC

Olendzenski L., Gogarten J.P. Evolution of genes and organisms: The tree/web of life in light of horizontal gene transfer. Ann. N. Y. Acad. Sci. 2009;1178:137–145. doi: 10.1111/j.1749-6632.2009.04998.x. PubMed DOI

Brocchieri L., Karlin S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 2005;33:3390–3400. doi: 10.1093/nar/gki615. PubMed DOI PMC

Kryazhimskiy S., Plotkin J.B. The population genetics of dN/dS. PLoS Genet. 2008;4:e1000304. doi: 10.1371/journal.pgen.1000304. PubMed DOI PMC

Rogozin I.B., Spiridonov A.N., Sorokin A.V., Wolf Y.I., Jordan I.K., Tatusov R.L., Koonin E.V. Purifying and directional selection in overlapping prokaryotic genes. Trends Genet. 2002;18:228–232. doi: 10.1016/S0168-9525(02)02649-5. PubMed DOI

Rogozin I.B., Belinky F., Pavlenko V., Shabalina S.A., Kristensen D.M., Koonin E.V. Evolutionary switches between two serine codon sets are driven by selection. Proc. Natl. Acad. Sci. USA. 2016;113:13109–13113. doi: 10.1073/pnas.1615832113. PubMed DOI PMC

Belinky F., Rogozin I.B., Koonin E.V. Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Sci. Rep. 2017;7:12422. doi: 10.1038/s41598-017-12619-6. PubMed DOI PMC

Belinky F., Sela I., Rogozin I.B., Koonin E.V. Crossing fitness valleys via double substitutions within codons. BMC Biol. 2019;17:105. doi: 10.1186/s12915-019-0727-4. PubMed DOI PMC

Belinky F., Babenko V.N., Rogozin I.B., Koonin E.V. Purifying and positive selection in the evolution of stop codons. Sci. Rep. 2018;8:9260. doi: 10.1038/s41598-018-27570-3. PubMed DOI PMC

Rogozin I.B., Pavlov Y.I., Bebenek K., Matsuda T., Kunkel T.A. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat. Immunol. 2001;2:530–536. doi: 10.1038/88732. PubMed DOI

Chan K., Gordenin D.A. Clusters of multiple mutations: Incidence and molecular mechanisms. Annu. Rev. Genet. 2015;49:243–267. doi: 10.1146/annurev-genet-112414-054714. PubMed DOI PMC

Chen J.M., Ferec C., Cooper D.N. Complex multiple-nucleotide substitution mutations causing human inherited disease reveal novel insights into the action of translesion synthesis DNA polymerases. Hum. Mutat. 2015;36:1034–1038. doi: 10.1002/humu.22831. PubMed DOI

Andersson S.G., Kurland C.G. Codon preferences in free-living microorganisms. Microbiol. Rev. 1990;54:198–210. doi: 10.1128/MR.54.2.198-210.1990. PubMed DOI PMC

Eggertsson G., Soll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 1988;52:354–374. doi: 10.1128/MR.52.3.354-374.1988. PubMed DOI PMC

Parker J. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 1989;53:273–298. doi: 10.1128/MR.53.3.273-298.1989. PubMed DOI PMC

Roth J.R. UGA nonsense mutations in Salmonella typhimurium. J. Bacteriol. 1970;102:467–475. doi: 10.1128/JB.102.2.467-475.1970. PubMed DOI PMC

Karow M.L., Rogers E.J., Lovett P.S., Piggot P.J. Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J. Bacteriol. 1998;180:4166–4170. doi: 10.1128/JB.180.16.4166-4170.1998. PubMed DOI PMC

Wan W., Tharp J.M., Liu W.R. Pyrrolysyl-tRNA synthetase: An ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta. 2014;1844:1059–1070. doi: 10.1016/j.bbapap.2014.03.002. PubMed DOI PMC

Kotini S.B., Peske F., Rodnina M.V. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence. Nucleic Acids Res. 2015;43:6426–6438. doi: 10.1093/nar/gkv558. PubMed DOI PMC

Gonzalez-Flores J.N., Shetty S.P., Dubey A., Copeland P.R. The molecular biology of selenocysteine. Biomol. Concepts. 2013;4:349–365. doi: 10.1515/bmc-2013-0007. PubMed DOI PMC

Serio T.R., Lindquist S.L. [PSI+]: An epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 1999;15:661–703. doi: 10.1146/annurev.cellbio.15.1.661. PubMed DOI

Keeling K.M., Lanier J., Du M., Salas-Marco J., Gao L., Kaenjak-Angeletti A., Bedwell D.M. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA. 2004;10:691–703. doi: 10.1261/rna.5147804. PubMed DOI PMC

Kramarski L., Arbely E. Translational read-through promotes aggregation and shapes stop codon identity. Nucleic Acids Res. 2020;48:3747–3760. doi: 10.1093/nar/gkaa136. PubMed DOI PMC

Kondrashov F.A., Rogozin I.B., Wolf Y.I., Koonin E.V. Selection in the evolution of gene duplications. Genome Biol. 2002;3:RESEARCH0008. doi: 10.1186/gb-2002-3-2-research0008. PubMed DOI PMC

Rogozin I.B. Complexity of gene expression evolution after duplication: Protein dosage rebalancing. Genet. Res. Int. 2014;2014:516508. doi: 10.1155/2014/516508. PubMed DOI PMC

Liu Y., Zhou J., Omelchenko M.V., Beliaev A.S., Venkateswaran A., Stair J., Wu L., Thompson D.K., Xu D., Rogozin I.B., et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA. 2003;100:4191–4196. doi: 10.1073/pnas.0630387100. PubMed DOI PMC

Takahashi S. Positive and negative regulators of the metallothionein gene (review) Mol. Med. Rep. 2015;12:795–799. doi: 10.3892/mmr.2015.3459. PubMed DOI

Ojo D., Rodriguez D., Wei F., Bane A., Tang D. Downregulation of CYB5D2 is associated with breast cancer progression. Sci. Rep. 2019;9:6624. doi: 10.1038/s41598-019-43006-y. PubMed DOI PMC

Havis E., Duprez D. EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int. J. Mol. Sci. 2020;21:1664. doi: 10.3390/ijms21051664. PubMed DOI PMC

Peredo E.L., Cardon Z.G. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proc. Natl. Acad. Sci. USA. 2020;117:17438–17445. doi: 10.1073/pnas.1906904117. PubMed DOI PMC

Rogozin I.B., Gertz E.M., Baranov P.V., Poliakov E., Schaffer A.A. Genome-wide changes in protein translation efficiency are associated with autism. Genome Biol. Evol. 2018;10:1902–1919. doi: 10.1093/gbe/evy146. PubMed DOI PMC

Sokolowski M.B. Functional testing of ASD-associated genes. Proc. Natl. Acad. Sci. USA. 2020;117:26–28. doi: 10.1073/pnas.1919695117. PubMed DOI PMC

Ji X., Kember R.L., Brown C.D., Bucan M. Increased burden of deleterious variants in essential genes in autism spectrum disorder. Proc. Natl. Acad. Sci. USA. 2016;113:15054–15059. doi: 10.1073/pnas.1613195113. PubMed DOI PMC

Bobay L.M., Touchon M., Rocha E.P. Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. USA. 2014;111:12127–12132. doi: 10.1073/pnas.1405336111. PubMed DOI PMC

Czajkowski R. May the phage be with you? Prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front. Microbiol. 2019;10:138. doi: 10.3389/fmicb.2019.00138. PubMed DOI PMC

Li Y., Gordon E., Shean R.C., Idle A., Deng X., Greninger A.L., Delwart E. CrAssphage and its bacterial host in cat feces. Sci. Rep. 2021;11:815. doi: 10.1038/s41598-020-80076-9. PubMed DOI PMC

Baranov P.V., Gesteland R.F., Atkins J.F. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA. 2004;10:221–230. doi: 10.1261/rna.5122604. PubMed DOI PMC

Lainé S., Thouard A., Komar A.A., Rossignol J.M. Ribosome can resume the translation in both +1 or −1 frames after encountering an AGA cluster in Escherichia coli. Gene. 2008;412:95–101. doi: 10.1016/j.gene.2008.01.018. PubMed DOI

Kondrashov A.S., Rogozin I.B. Context of deletions and insertions in human coding sequences. Hum. Mutat. 2004;23:177–185. doi: 10.1002/humu.10312. PubMed DOI

Wei X., Zhang J. A simple method for estimating the strength of natural selection on overlapping genes. Genome Biol. Evol. 2014;7:381–390. doi: 10.1093/gbe/evu294. PubMed DOI PMC

Kristensen D.M., Wolf Y.I., Koonin E.V. ATGC database and ATGC-COGs: An updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Res. 2017;45:D210–D218. doi: 10.1093/nar/gkw934. PubMed DOI PMC

Andersson J.O., Andersson S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 2001;18:829–839. doi: 10.1093/oxfordjournals.molbev.a003864. PubMed DOI

Ejigu G.F., Jung J. Review on the computational genome annotation of sequences obtained by next-generation sequencing. Biology. 2020;9:295. doi: 10.3390/biology9090295. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The 29-nucleotide deletion in SARS-CoV: truncated versions of ORF8 are under purifying selection

. 2023 Jul 10 ; 24 (1) : 387. [epub] 20230710

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace