The Impact of Physical Motion Cues on Driver Braking Performance: A Clinical Study Using Driving Simulator and Eye Tracker
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NA
Czech Technical University in Prague
PubMed
36616641
PubMed Central
PMC9824264
DOI
10.3390/s23010042
PII: s23010042
Knihovny.cz E-zdroje
- Klíčová slova
- driver behavior, driving simulator, eye tracker, motion cues impact, motion platform, performance evaluation,
- MeSH
- dopravní nehody MeSH
- kinetózy * MeSH
- lidé MeSH
- počítačová simulace MeSH
- podněty MeSH
- pohyb těles MeSH
- průzkumy a dotazníky MeSH
- řízení motorových vozidel * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Driving simulators are increasingly being incorporated by driving schools into a training process for a variety of vehicles. The motion platform is a major component integrated into simulators to enhance the sense of presence and fidelity of the driving simulator. However, less effort has been devoted to assessing the motion cues feedback on trainee performance in simulators. To address this gap, we thoroughly study the impact of motion cues on braking at a target point as an elementary behavior that reflects the overall driver's performance. In this paper, we use an eye-tracking device to evaluate driver behavior in addition to evaluating data from a driving simulator and considering participants' feedback. Furthermore, we compare the effect of different motion levels ("No motion", "Mild motion", and "Full motion") in two road scenarios: with and without the pre-braking warning signs with the speed feedback given by the speedometer. The results showed that a full level of motion cues had a positive effect on braking smoothness and gaze fixation on the track. In particular, the presence of full motion cues helped the participants to gradually decelerate from 5 to 0 ms-1 in the last 240 m before the stop line in both scenarios, without and with warning signs, compared to the hardest braking from 25 to 0 ms-1 produced under the no motion cues conditions. Moreover, the results showed that a combination of the mild motion conditions and warning signs led to an underestimation of the actual speed and a greater fixation of the gaze on the speedometer. Questionnaire data revealed that 95% of the participants did not suffer from motion sickness symptoms, yet participants' preferences did not indicate that they were aware of the impact of simulator conditions on their driving behavior.
Zobrazit více v PubMed
Bruck L., Haycock B., Emadi A. A Review of Driving Simulation Technology and Applications. IEEE Open J. Veh. Technol. 2021;2:1–16. doi: 10.1109/OJVT.2020.3036582. DOI
Wynne R.A., Beanland V., Salmon P.M. Systematic review of driving simulator validation studies. Saf. Sci. 2019;117:138–151. doi: 10.1016/j.ssci.2019.04.004. DOI
Chen J., Wang X., Cheng Z., Gao Y., Tremont P.J. Evaluation of the optimal quantity of in-vehicle information icons using a fuzzy synthetic evaluation model in a driving simulator. Accid. Anal. Prev. 2022;176:106813. doi: 10.1016/j.aap.2022.106813. PubMed DOI
Yeo D., Kim G., Kim S. Toward Immersive Self-Driving Simulations: Reports from a User Study across Six Platforms; Proceedings of the CHI’20: 2020 CHI Conference on Human Factors in Computing Systems; Honolulu, HI, USA. 25–30 April 2020; pp. 1–12. DOI
Hock P., Kraus J., Babel F., Walch M., Rukzio E., Baumann M. How to design valid simulator studies for investigating user experience in automated driving—Review and hands-on considerations; Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2018; Toronto, ON, Canada. 23–25 September 2018; pp. 105–117. DOI
Fares A., Wickens C.M., Mann R.E., Di Ciano P., Wright M., Matheson J., Hasan O.S.M., Rehm J., George T.P., Samokhvalov A.V., et al. Combined effect of alcohol and cannabis on simulated driving. Psychopharmacology. 2022;239:1263–1277. doi: 10.1007/s00213-021-05773-3. PubMed DOI
Goode N., Salmon P.M., Lenné M.G. Simulation-based driver and vehicle crew training: Applications, efficacy and future directions. Appl. Ergon. 2013;44:435–444. doi: 10.1016/j.apergo.2012.10.007. PubMed DOI
Naweed A. Simulator integration in the rail industry: The Robocop problem. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2013;227:407–418. doi: 10.1177/0954409713488365. DOI
Nikitenko A., Shvets A. Software and hardware simulators for train drivers training: Overview of possibilities and effects of application. Prz. Elektrotechniczny. 2020;96:198–201. doi: 10.15199/48.2020.11.42. DOI
Allen R.W., Park G.D., Cook M.L. Simulator fidelity and validity in a transfer-of-training context. Transp. Res. Rec. 2010;2185:40–47. doi: 10.3141/2185-06. DOI
Rosenbloom T., Eldror E. Effectiveness evaluation of simulative workshops for newly licensed drivers. Accid. Anal. Prev. 2014;63:30–36. doi: 10.1016/j.aap.2013.09.018. PubMed DOI
Freeman P., Neyens D.M., Wagner J., Switzer F., Alexander K., Pidgeon P. A video based run-off-road training program with practice and evaluation in a simulator. Accid. Anal. Prev. 2015;82:1–9. doi: 10.1016/j.aap.2015.05.008. PubMed DOI
Meuleners L., Fraser M. A validation study of driving errors using a driving simulator. Transp. Res. Part F Traffic. Psychol. Behav. 2015;29:14–21. doi: 10.1016/j.trf.2014.11.009. DOI
Cleij D., Venrooij J., Pretto P., Katliar M., Bülthoff H., Steffen D., Hoffmeyer F., Schöner H.-P. Comparison between filter- and optimization-based motion cueing algorithms for driving simulation. Transp. Res. Part F Traffic. Psychol. Behav. 2019;61:53–68. doi: 10.1016/j.trf.2017.04.005. DOI
Koyuncu A.B., Ercelik E., Comulada-Simpson E., Venrooij J., Kaboli M., Knoll A. A Novel Approach to Neural Network-based Motion Cueing Algorithm for a Driving Simulator; Proceedings of the IEEE Intelligent Vehicles; Las Vegas, NV, USA. 19 October–13 November 2020; pp. 2118–2125. DOI
Asadi H., Bellmann T., Mohamed S., Lim C.P., Khosravi A., Nahavandi S. Adaptive Motion Cueing Algorithm using Optimized Fuzzy Control System for Motion Simulators. IEEE Trans. Intell. Veh. 2022;8858:1–13. doi: 10.1109/TIV.2022.3147862. DOI
Khusro Y.R., Zheng Y., Grottoli M., Shyrokau B. MPC-Based Motion-Cueing Algorithm for a 6-DOF Driving Simulator with Actuator Constraints. Vehicles. 2020;2:625–647. doi: 10.3390/vehicles2040036. DOI
Asadi H., Lim C.P., Mohamed S., Nahavandi D., Nahavandi S. Increasing motion fidelity in driving simulators using a fuzzy-based washout filter. IEEE Trans. Intell. Veh. 2019;4:298–308. doi: 10.1109/TIV.2019.2904388. DOI
Asadi H., Lim C.P., Mohammadi A., Mohamed S., Nahavandi S., Shanmugam L. A genetic algorithm–based nonlinear scaling method for optimal motion cueing algorithm in driving simulator. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018;232:1025–1038. doi: 10.1177/0959651818772940. DOI
Mohellebi H., Espié S., Kheddar A., Arioui H., Amouri A. Mechatronics Safety, Secur Dependability a New Era. Elsevier; Amsterdam, The Netherlands: 2007. Design of Low-Clearance Motion Platform for Driving Simulators; pp. 401–404. DOI
Arioui H., Hima S., Nehaoua L., Bertin R.J.V., Espié S. From design to experiments of a 2-DOF vehicle driving simulator. IEEE Trans. Veh. Technol. 2011;60:357–368. doi: 10.1109/TVT.2010.2090675. DOI
Khadeir A.M., Saehood Z.A., Mutar H.S., Abduljabbar A.S., Al-Dahwi A.M., Abdulameer R.H., Mohammed A.A. Journal of Physics: Conference Series. IOP Publishing; Bristol, UK: 2021. Building and validation of a low-cost driving simulator; p. 1973. DOI
De Frutos S.H., Castro M. Assessing sim racing software for low-cost driving simulator to road geometric research. Transp. Res. Procedia. 2021;58:575–582. doi: 10.1016/j.trpro.2021.11.076. DOI
Llopis-Castelló D., Camacho-Torregrosa F.J., Marín-Morales J., Pérez-Zuriaga A.M., García A., Dols J.F. Validation of a low-cost driving simulator based on continuous speed profiles. Transp. Res. Rec. 2016;2602:104–114. doi: 10.3141/2602-13. DOI
Huang A.R.W., Chen C. A low-cost driving simulator for full vehicle dynamics simulation. IEEE Trans. Veh. Technol. 2003;52:162–172. doi: 10.1109/TVT.2002.807157. DOI
Mecheri S., Lobjois R. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab. Hum. Factors. 2018;60:719–734. doi: 10.1177/0018720818769253. PubMed DOI
Mclane R.C., Wierwille W.W. The Influence of Motion and Audio Cues on Driver Performance in an Automobile Simulator. Hum. Factors. 1975;17:488–501. doi: 10.1177/001872087501700508. DOI
Siegler I., Reymond G., Kemeny A., Berthoz A. Sensorimotor Integration in a Driving Simulator: Contributions of Motion Cueing in Elementary Driving Tasks. [(accessed on 16 December 2022)];DSC Europe. 2001 :21–32. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=66a310c99462f7652afb9ba3beb94c9b369771db.
Colombet F., Dagdelen M., Kemeny A. Motion Cueing: What’s the Impact on the Driver’s Behaviour?; Proceedings of the Driving Simulation Conference; 2008. [(accessed on 16 December 2022)]. pp. 171–181. Available online: https://www.researchgate.net/profile/Frederic-Merienne/publication/237305826_Motion_Cueing_what%27s_the_impact_on_the_driver%27s_behaviour/links/0deec52ebc25740a16000000/Motion-Cueing-whats-the-impact-on-the-drivers-behaviour.pdf.
Denjean S., Roussarie V., Kronland-Martinet R., Velay J.L. How does interior car noise alter driver’s perception of motion? Multisensory integration in speed perception; Proceedings of the Acoustic 2012 Nantes Conference; Nantes, France. 23–27 April 2012.
Reinhard R.T., Kleer M., Dreßler K. The impact of individual simulator experiences on usability and driving behavior in a moving base driving simulator. Transp. Res. Part F Traffic. Psychol. Behav. 2019;61:131–140. doi: 10.1016/j.trf.2018.01.004. DOI
Pathirana P., Senarath S., Meedeniya D., Jayarathna S. Eye gaze estimation: A survey on deep learning-based approaches. Expert Syst. Appl. 2022;199:116894. doi: 10.1016/j.eswa.2022.116894. DOI
Tanoubi I., Tourangeau M., Sodoké K., Perron R., Drolet P., Bélanger M., Morris J., Ranger C., Paradis M.-R., Robitaille A., et al. Comparing the visual perception according to the performance using the eye-tracking technology in high-fidelity simulation settings. Behav. Sci. 2021;11:31. doi: 10.3390/bs11030031. PubMed DOI PMC
Ojsteršek T.C., Topolšek D. Eye tracking use in researching driver distraction: A scientometric and qualitative literature review approach. J. Eye Mov. Res. 2019;12:1–30. doi: 10.16910/jemr.12.3.5. PubMed DOI PMC
Carr D.B., Grover P. The role of eye tracking technology in assessing older driver safety. Geriatrics. 2020;5:36. doi: 10.3390/geriatrics5020036. PubMed DOI PMC
Khan M.Q., Lee S. Gaze and eye tracking: Techniques and applications in ADAS. Sensors. 2019;19:5540. doi: 10.3390/s19245540. PubMed DOI PMC
Ledezma A., Zamora V., Sipele Ó., Sesmero M., Sanchis A. Implementing a gaze tracking algorithm for improving advanced driver assistance systems. Electronics. 2021;10:1480. doi: 10.3390/electronics10121480. DOI
Gomolka Z., Kordos D., Zeslawska E. The application of flexible areas of interest to pilot mobile eye tracking. Sensors. 2020;20:986. doi: 10.3390/s20040986. PubMed DOI PMC
Le A.S., Suzuki T., Aoki H. Evaluating driver cognitive distraction by eye tracking: From simulator to driving. Transp. Res. Interdiscip. Perspect. 2020;4:100087. doi: 10.1016/j.trip.2019.100087. DOI
Boer E.R. A Multi-Sensory Cybernetic Driver Model of Stopping Behavior: Comparing Reality Against Simulators with Different Cue-Rendering Fidelities. IFAC-PapersOnLine. 2016;49:349–354. doi: 10.1016/j.ifacol.2016.10.590. DOI
Bouchner P., Novotny S. Development of advanced driving simulator: Steering wheel and brake pedal feedback; Proceedings of the 2nd International Conference on Circuits, Systems, Control, Signals, CSCS’11; Prague, Czech Republic. 26–28 September 2011; pp. 170–174.
Bouchner P., Novotný S. Car dynamics model—Design for interactive driving simulation use; Proceedings of the 2nd International Conference on Applied Informatics and Computing Theory, AICT’11; Prague, Czech Republic. 26–28 September 2011; pp. 285–289.
Pragolet . Your Real Simulator. Pragolet s.r.o.; Mnichovice, Czech Republic: 2022. [(accessed on 16 December 2022)]. Available online: http://www.pragolet.cz.
Wei M.Y., Chen S.W. Optimal Control-based Motion Cueing Algorithm Design for 6DOF Motion Platform; Proceedings of the 4th International Conference on Knowledge Innovation and Invention 2021, ICKII 2021; Taichung, Taiwan. 23–25 July 2021; pp. 216–222. DOI
Tobii Pro Glasses 3. 2022. [(accessed on 16 December 2022)]. Available online: https://www.tobii.com/products/eye-trackers/wearables/tobii-pro-glasses-3.
Olsen A. The Tobii I-VT Fixation Filter: Algorithm description. Tobii. Technol. 2012;21:4–19.
Reuten A.J.C., Bos J.E., Smeets J.B.J. The metrics for measuring motion sickness. Actes (IFSTTAR) 2020;1:183–186.
Fitzpatrick K.A.Y., Mason J.M. Review of AASHTO Green Book Procedures for Sight Distance at Ramp Terminals Vehicle Acceleration from a Stopped Position. Transp. Res. Rec. 1984;1280:190–198.
Sahami S., Sayed T. How drivers adapt to drive in driving simulator, and what is the impact of practice scenario on the research? Transp. Res. Part F Traffic. Psychol. Behav. 2013;16:41–52. doi: 10.1016/j.trf.2012.08.003. DOI
Ronen A., Yair N. The adaptation period to a driving simulator. Transp. Res. Part F Traffic. Psychol. Behav. 2013;18:94–106. doi: 10.1016/j.trf.2012.12.007. DOI