Up-regulation of CD163 expression in subpopulations of blood monocytes after kidney allograft transplantation

. 2020 Nov 16 ; 69 (5) : 885-896. [epub] 20200909

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32901498

M2 macrophages expressing CD163 are known to suppress immune responses but have been also found in biopsies of patients with chronic kidney allograft injury associated with interstitial fibrosis. The aim of our study was to evaluate the expression of CD163 in blood monocytes, precursors of tissue macrophages, in kidney allograft recipients with uncomplicated outcome (n=94) compared with those developing acute rejection (n=44). Blood samples were collected before the transplantation and at 1 week, 1 month and 1 year. The expression of CD163 increased during the first week after the transplantation not only in classical (CD14+CD16-) but also in intermediate (CD14+CD16+) and nonclassical (CD14lowCD16+) monocytes in all patients regardless of their rejection status. In patients developing acute rejection, higher pre-transplant expression of CD163 on blood monocytes was found. In vitro experiments confirmed strong induction of membrane CD163 on monocytes together with CD206 (an alternative marker of M2 macrophages) in response to IL-10. We assume from our data that dramatic upregulation of CD163 by peripheral blood monocytes may have a pathophysiological role in early phases after kidney allograft transplantation and high pre-transplant expression of CD163 on blood monocytes might be involved in events leading to acute rejection.

Zobrazit více v PubMed

AKAHORI H, KARMALI V, POLAVARAPU R, LYLE AN, WEISS D, SHIN E, HUSAIN A, NAQVI N, Van DAM R, HABIB A, CHOI CU, KING AL, PACHURA K, TAYLOR WR, LEFER DJ, FINN AV. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. Nat Commun. 2015;6:7792. doi: 10.1038/ncomms8792. PubMed DOI PMC

BOWE B, XIE Y, XIAN H, LI T, AL-ALY Z. Association between monocyte count and risk of incident CKD and progression to ESRD. Clin J Am Soc Nephrol. 2017;12:603–613. doi: 10.2215/cjn.09710916. PubMed DOI PMC

CERNY J, STRIZ I. Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond) 2019;133:1549–1565. doi: 10.1042/cs20180548. PubMed DOI

CINKAJZLOVA A, LACINOVÁ Z, KLOUČKOVÁ J, KAVÁLKOVÁ P, TRACHTA M, KOSÁK M, KRÁTKÝ J, KASALICKÝ M, DOLEŽALOVÁ K, MRÁZ M, HALUZÍK M. An alternatively activated macrophage marker CD163 in severely obese patients: the influence of very low-calorie diet and bariatric surgery. Physiol Res. 2017;66:641–652. doi: 10.33549/physiolres.933522. PubMed DOI

DESY O, BELAND S, VALLIN P, RIOPEL J, LATULIPPE E, NAJAFIAN N, CHANDRAKER A, AGHARAZII M, BATAL I, De SERRES SA. IL-6 production by monocytes is associated with graft function decline in patients with borderline changes suspicious for acute T-cell-mediated rejection: a pilot study. Transpl Int. 2018;31:92–101. doi: 10.1111/tri.13070. PubMed DOI

DIGE A, STOY S, THOMSEN KL, HVAS CL, AGNHOLT J, DAHLERUP JF, MOLLER HJ, GRONBAEK H. Soluble CD163, a specific macrophage activation marker, is decreased by anti-TNF-alpha antibody treatment in active inflammatory bowel disease. Scand J Immunol. 2014;80:417–423. doi: 10.1111/sji.12222. PubMed DOI

ETZERODT A, RASMUSSEN MR, SVENDSEN P, CHALARIS A, SCHWARZ J, GALEA I, MOLLER HJ, MOESTRUP SK. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-alpha in macrophages. J Biol Chem. 2014;289:778–788. doi: 10.1074/jbc.m113.520213. PubMed DOI PMC

FABRIEK BO, DIJKSTRA CD, Van den BERG TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210:153–160. doi: 10.1016/j.imbio.2005.05.010. PubMed DOI

FABRIEK BO, Van BRUGGEN R, DENG DM, LIGTENBERG AJ, NAZMI K, SCHORNAGEL K, VLOET RP, DIJKSTRA CD, Van den BERG TK. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113:887–892. doi: 10.1182/blood-2008-07-167064. PubMed DOI

GIRLANDA R, KLEINER DE, DUAN Z, FORD EA, WRIGHT EC, MANNON RB, KIRK AD. Monocyte infiltration and kidney allograft dysfunction during acute rejection. Am J Transplant. 2008;8:600–607. doi: 10.1111/j.1600-6143.2007.02109.x. PubMed DOI PMC

GUILLÉN-GÓMEZ E, GUIRADO L, BELMONTE X, MADERUELO A, SANTÍN S, JUAREZ C, ARS E, FACUNDO C, BALLARÍN JA, VIDAL S, DÍAZ-ENCARNACIÓN MM. Monocyte implication in renal allograft dysfunction. Clin Exp Immunol. 2014;175:323–331. doi: 10.1111/cei.12228. PubMed DOI PMC

HAAS M, LOUPY A, LEFAUCHEUR C, ROUFOSSE C, GLOTZ D, SERON D, NANKIVELL BJ, HALLORAN PF, COLVIN RB, AKALIN E, ALACHKAR N, BAGNASCO S, BOUATOU Y, BECKER JU, CORNELL LD, DUONG Van HUYEN JP, GIBSON IW, KRAUS ES, MANNON RB, NAESENS M, ET AL. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018;18:293–307. doi: 10.1111/ajt.14625. PubMed DOI PMC

HIGHAM A, SCOTT T, LI J, GASKELL R, DIKWA AB, SHAH R, MONTERO-FERNANDEZ MA, LEA S, SINGH D. Effects of corticosteroids on COPD lung macrophage phenotype and function. Clin Sci. 2020;134:751–763. doi: 10.1042/cs20191202. PubMed DOI

HOSKOVA L, MALEK I, KOPKAN L, KAUTZNER J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physiol Res. 2017;66:167–180. doi: 10.33549/physiolres.933332. PubMed DOI

HOU J, ZHANG M, DING Y, WANG X, LI T, GAO P, JIANG Y. Circulating CD14(+)CD163(+)CD206(+) M2 monocytes are increased in patients with early stage of idiopathic membranous nephropathy. Mediators Inflamm. 2018;2018:5270657. doi: 10.1155/2018/5270657. PubMed DOI PMC

HU JM, LIU K, LIU JH, JIANG XL, WANG XL, CHEN YZ, LI SG, ZOU H, PANG LJ, LIU CX, CUI XB, YANG L, ZHAO J, SHEN XH, JIANG JF, LIANG WH, YUAN XL, LI F. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. Oncotarget. 2017;8:21526–21538. doi: 10.18632/oncotarget.15630. PubMed DOI PMC

IKEZUMI Y, SUZUKI T, YAMADA T, HASEGAWA H, KANEKO U, HARA M, YANAGIHARA T, NIKOLIC-PATERSON DJ, SAITOH A. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol. 2015;30:1007–1017. doi: 10.1007/s00467-014-3023-0. PubMed DOI

KIM J, CHOI SE, LIM BJ, KIM YS, HUH KH, LEE J, KIM SI, KIM MS, JEONG HJ. Clinical significance of macrophage polarization in antibody-mediated rejection of renal allograft. Transplant Proc. 2018;50:1005–1008. doi: 10.1016/j.transproceed.2018.02.037. PubMed DOI

MANIECKI MB, ETZERODT A, MOESTRUP SK, MOLLER HJ, GRAVERSEN JH. Comparative assessment of the recognition of domain-specific CD163 monoclonal antibodies in human monocytes explains wide discrepancy in reported levels of cellular surface CD163 expression. Immunobiology. 2011;216:882–890. doi: 10.1016/j.imbio.2011.02.001. PubMed DOI

MANIECKI MB, MOLLER HJ, MOESTRUP SK, MOLLER BK. CD163 positive subsets of blood dendritic cells: the scavenging macrophage receptors CD163 and CD91 are coexpressed on human dendritic cells and monocytes. Immunobiology. 2006;211:407–417. doi: 10.1016/j.imbio.2006.05.019. PubMed DOI

MAYER A, LEE S, JUNG F, GRUTZ G, LENDLEIN A, HIEBL B. CD14+ CD163+ IL-10+ monocytes/macrophages: Pro-angiogenic and non pro-inflammatory isolation, enrichment and long-term secretion profile. Clin Hemorheol Microcirc. 2010;46:217–223. doi: 10.3233/ch-2010-1348. PubMed DOI

MOGHADDAM AS, MOHAMMADIAN S, VAZINI H, TAGHADOSI M, ESMAEILI SA, MARDANI F, SEIFI B, MOHAMMADI A, AFSHARI JT, SAHEBKAR A. Macrophage plasticity, polarization and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429. PubMed DOI

MORENO JA, MUNOZ-GARCIA B, MARTIN-VENTURA JL, MADRIGAL-MATUTE J, ORBE J, PARAMO JA, ORTEGA L, EGIDO J, BLANCO-COLIO LM. The CD163-expressing macrophages recognize and internalize TWEAK: potential consequences in atherosclerosis. Atherosclerosis. 2009;207:103–110. doi: 10.1016/j.atherosclerosis.2009.04.033. PubMed DOI

NIGAM N, BIHARI C, LAL D, RASTOGI A, KUMAR S, PAMECHA V, KAUR S, KUMAR A, SARIN SK. Donor CD163 and nestin-positive cells predict graft function in living donor liver transplant. Clin Transplant. 2018;32:e13197. doi: 10.1111/ctr.13197. PubMed DOI

ONG S-M, TENG K, NEWELL E, CHEN H, CHEN J, LOY T, YEO T-W, FINK K, WONG S-C. A novel, five-marker alternative to CD16-CD14 gating to identify the three human monocyte subsets. Front Immunol. 2019;10:1761. doi: 10.3389/fimmu.2019.01761. PubMed DOI PMC

RITTER M, BUECHLER C, LANGMANN T, ORSO E, KLUCKEN J, SCHMITZ G. The scavenger receptor CD163: regulation, promoter structure and genomic organization. Pathobiology. 1999;67:257–261. doi: 10.1159/000028105. PubMed DOI

SAEED S, QUINTIN J, KERSTENS HHD, RAO NA, AGHAJANIREFAH A, MATARESE F, CHENG S-C, RATTER J, BERENTSEN K, Van der ENT MA, SHARIFI N, JANSSEN-MEGENS EM, TER HUURNE M, MANDOLI A, Van SCHAIK T, NG A, BURDEN F, DOWNES K, FRONTINI M, KUMAR V. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. doi: 10.1126/science.1251086. PubMed DOI PMC

SEKERKOVA A, KREPSOVA E, BRABCOVA E, SLATINSKA J, VIKLICKY O, LANSKA V, STRIZ I. CD14+CD16+ and CD14+CD163+ monocyte subpopulations in kidney allograft transplantation. BMC Immunol. 2014;15:4. doi: 10.1186/1471-2172-15-4. PubMed DOI PMC

SHIN S, KIM YH, CHO YM, PARK Y, HAN S, CHOI BH, CHOI JY, HAN DJ. Interpreting CD56+ and CD163+ infiltrates in early versus late renal transplant biopsies. Am J Nephrol. 2015;41:362–369. doi: 10.1159/000430473. PubMed DOI

SHIRAISHI D, FUJIWARA Y, HORLAD H, SAITO Y, IRIKI T, TSUBOKI J, CHENG P, NAKAGATA N, MIZUTA H, BEKKI H, NAKASHIMA Y, ODA Y, TAKEYA M, KOMOHARA Y. CD163 is required for protumoral activation of macrophages in human and murine sarcoma. Cancer Res. 2018;78:3255–3266. doi: 10.1158/0008-5472.CAN-17-2011. PubMed DOI

SMILJANOVIC B, RADZIKOWSKA A, KUCA-WARNAWIN E, KUROWSKA W, GRÜN JR, STUHLMÜLLER B, BONIN M, SCHULTE-WREDE U, SÖRENSEN T, KYOGOKU C, BRUNS A, HERMANN S, OHRNDORF S, AUPPERLE K, BACKHAUS M, BURMESTER GR, RADBRUCH A, GRÜTZKAU A, MASLINSKI W, HÄUPL T. Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Ann Rheum Dis. 2018;77:300–308. doi: 10.1136/annrheumdis-2017-211649. PubMed DOI PMC

STANSFIELD BK, INGRAM DA. Clinical significance of monocyte heterogeneity. Clin Transl Med. 2015;4:5. doi: 10.1186/s40169-014-0040-3. PubMed DOI PMC

STOKMAN G, KERS J, YAPICI Ü, HOELBEEK JJ, CLAESSEN N, De BOER OJ, NETEA MG, HILBRANDS L, BEMELMAN FJ, TEN BERGE IJM, FLORQUIN S. Predominant tubular interleukin-18 expression in polyomavirus-associated nephropathy. Transplantation. 2016;100:e88–e95. doi: 10.1097/TP.0000000000001086. PubMed DOI

STRIZ I, WANG YM, SVARCOVA I, TRNKA L, SORG C, COSTABEL U. The phenotype of alveolar macrophages and its correlation with immune cells in bronchoalveolar lavage. Eur Respir J. 1993;6:1287–1294. PubMed

TANIMURA H, MIZUNO K, OKAMOTO H. Serum levels of soluble CD163 as a specific marker of macrophage/monocyte activity in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 2015;32:99–105. PubMed

TRAILIN A, HRUBA P, VIKLICKY O. Molecular assessment of kidney allografts: are we closer to a daily routine? Physiol Res. 2020;69:215–226. doi: 10.33549/physiolres.934278. PubMed DOI PMC

Van den BOSCH TP, CALISKAN K, KRAAIJ MD, CONSTANTINESCU AA, MANINTVELD OC, LEENEN PJ, Von der THUSEN JH, CLAHSEN-Van GRONINGEN MC, BAAN CC, ROWSHANI AT. CD16+ monocytes and skewed macrophage polarization toward M2 type hallmark heart transplant acute cellular rejection. Front Immunol. 2017a;8:346. doi: 10.3389/fimmu.2017.00346. PubMed DOI PMC

Van den BOSCH TPP, HILBRANDS LB, KRAAIJEVELD R, LITJENS NHR, REZAEE F, NIEBOER D, STEYERBERG EW, Van GESTEL JA, ROELEN DL, CLAHSEN-Van GRONINGEN MC, BAAN CC, ROWSHANI AT. Pretransplant numbers of CD16(+) monocytes as a novel biomarker to predict acute rejection after kidney transplantation: a pilot study. Am J Transplant. 2017b;17:2659–2667. doi: 10.1111/ajt.14280. PubMed DOI

Van LOON E, BERNARDS J, Van CRAENENBROECK AH, NAESENS M. The causes of kidney allograft failure: more than alloimmunity a viewpoint article. Transplantation. 2020;104:e46–e56. doi: 10.1097/tp.0000000000003012. PubMed DOI

WONG KL, TAI JJ, WONG WC, HAN H, SEM X, YEAP WH, KOURILSKY P, WONG SC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–e31. doi: 10.1182/blood-2010-12-326355. PubMed DOI

ZECHER D, Van ROOIJEN N, ROTHSTEIN DM, SHLOMCHIK WD, LAKKIS FG. An innate response to allogeneic nonself mediated by monocytes. J Immunol. 2009;183:7810–7816. doi: 10.4049/jimmunol.0902194. PubMed DOI

ZIEGLER-HEITBROCK L, ANCUTA P, CROWE S, DALOD M, GRAU V, HART DN, LEENEN PJM, LIU Y-J, MacPHERSON G, RANDOLPH GJ, SCHERBERICH J, SCHMITZ J, SHORTMAN K, SOZZANI S, STROBL H, ZEMBALA M, AUSTYN JM, LUTZ MB. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–e80. doi: 10.1182/blood-2010-02-258558. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...