• This record comes from PubMed

Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation

. 2020 Feb 19 ; 13 (4) : . [epub] 20200219

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.1.05/2.1.00/19.0376 undefined <span style="color:gray;font-size:10px;">undefined</span>
IGA/FT/2020/003 undefined <span style="color:gray;font-size:10px;">undefined</span>
LO1303 undefined <span style="color:gray;font-size:10px;">undefined</span>

This study's goal was to describe the influence of a wide range of ionizing beta radiation upon the changes in surface layer mechanical properties and structural modifications of selected types of polymer. Radiation crosslinking is a process whereby the impingement of high-energy electrons adjusts test sample structures, thus enhancing the useful properties of the material, e.g., hardness, wear-resistance, and creep, in order that they may function properly during their technical use. The selected polymers tested were polyolefin polymers like polyethylene (Low-density polyethylene LDPE, High-density polyethylene HDPE). These samples underwent exposure to electron radiation of differing dosages (33, 66, 99, 132, 165, and 198 kGy). After the crosslinking process, the samples underwent testing of the nano-mechanical properties of their surface layers. This was done by means of a state-of-the-art indentation technique, i.e., depth-sensing indentation (DSI), which detects the immediate change in the indentation depth associated with the applied force. Indeed, the results indicated that the optimal radiation dosage increased the mechanical properties by up to 57%; however, the beneficial levels of radiation varied with each material. Furthermore, these modifications faced examination from the structural perspective. For this purpose, a gel test, Raman spectroscopy, and crystalline portion determination by X-ray all confirmed the assumed trends.

See more in PubMed

Drobný J.G. Radiation Technology for Polymers. CRC Press; Boca Raton, FL, USA: 2010.

Salomon W.A., Loan L.D. Radiation crosslinking of poly(vinyl chloride) J. Appl. Polym. Sci. 1972;16:671–682. doi: 10.1002/app.1972.070160312. DOI

Mizera A., Chalupa P., Hudec I. Impact resistance of high-density polyethylene against falling penetrator with different potential energy. Matec Web Conf. 2017;125:02050. doi: 10.1051/matecconf/201712502050. DOI

Cassidy J., Nesaei S., McTaggart R., Delfanian F. Mechanical response of high density polyethylene to gamma radiatin from a Cobalt-60 irradiator. Polym. Test. 2016;52:111–116. doi: 10.1016/j.polymertesting.2016.04.005. DOI

Gheysari D., Behjat A., Haji-Saeid M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2001;37:295–302. doi: 10.1016/S0014-3057(00)00122-1. DOI

Zaki M.F., Elshaer Y.H., Taha D.H. The alterations in high density polyethylene properties with gamma irradiation. Radiat. Phys. Chem. 2017;139:90–96. doi: 10.1016/j.radphyschem.2017.02.058. DOI

Mohammadi M., Ziaie F., Majdabadi A., Akhavan A., Shafaei M. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite. Radiat. Phys. Chem. 2017;130:229–235. doi: 10.1016/j.radphyschem.2016.09.002. DOI

Romano R.S.G., Oliani W.L., Parra D.F., Lugao A.B. Accelerated environmental degradation of gamma irradiated polypropylene and thermal analysis. J. Anal. Calorim. 2018;131:823–828. doi: 10.1007/s10973-017-6653-1. DOI

Wang W., Zhang X., Mao Z., Zhao W. Effects of gamma radiation on the impact strength of polypropylene (PP)/high density polyethylene (HDPE) blends. Results. Phys. 2019;12:2169–2174. doi: 10.1016/j.rinp.2019.02.020. DOI

Köpplmayr T., Milosavljevic I., Aigner M., Hasslacher R., Plank B., Salaberger D., Miethlinger J. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 2013;32:535–544. doi: 10.1016/j.polymertesting.2013.02.002. DOI

Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. Wiley; Hoboken, NJ, USA: 2012. p. 415.

Drobny J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications. Elsevier/William Andrew; Oxford, UK: 2013. p. 298.

Satapathy S., Chattopadhyay S., Chakrabarty K.K., Nag A., Tiwari K.N., Tikku V.K., Nando G.B. Studies on the effect of electron beam irradiation on waste polyethylene and its blends with virgin polyethylene. J. Appl. Polym. Sci. 2006;101:715–726. doi: 10.1002/app.23970. DOI

Gehring J., Zyball A. Radiation crosslinking of polymers-status, current issues, trends and challenges. Radiat. Phys. Chem. 1995;46:931–936. doi: 10.1016/0969-806X(95)00295-9. DOI

Bradler P., Fischer J., Wallner G.M., Lang R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications—Basic Thermo-Analytical and Mechanical Properties. Polymers. 2018;10:969. doi: 10.3390/polym10090969. PubMed DOI PMC

Zhang D., Yang S., Cheng Y., Liu S., Zhao H., Gu J. 60Co γ-ray Irradiation Crosslinking of Chitosan/Graphene Oxide Composite Film: Swelling, Thermal Stability, Mechanical, and Antibacterial Properties. Polymers. 2018;10:294. doi: 10.3390/polym10030294. PubMed DOI PMC

Mizera A., Manas M., Manas D., Holik Z., Stanek M., Navratil J., Bednarik M. Temperature Stability of Modified PBT by Radiation Cross-Linking. Adv. Mater. Res. 2014;1025–1026:256–260. doi: 10.4028/www.scientific.net/AMR.1025-1026.256. DOI

Navratil J., Manas M., Mizeraa A., Bednarik M., Stanek M., Danek M. Recycling of irradiated high-density polyethylene. Radiat. Phys. Chem. 2015;106:68–72. doi: 10.1016/j.radphyschem.2014.06.025. DOI

Malinowski R. Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. Int. J. Adv. Manuf. Technol. 2016;87:3307–3314. doi: 10.1007/s00170-016-8713-2. DOI

Gourdin W.H., Datte P., Jensen W., Khater H., Pearson M., Girard S., Paillet P., Alozy E. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE. Fusion Eng. Des. 2016;112:343–348. doi: 10.1016/j.fusengdes.2016.07.005. DOI

Al Naim A., Alnaim N., Ibrahim S.S., Metwally S.M. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017;10:165–171. doi: 10.1016/j.jrras.2017.03.004. DOI

Seefried A., Drummer D. The effects of radiation cross-linking and process parameters on the behavior of polyamide 12 in vacuum thermoforming. Polym. Eng. Sci. 2012;52:884–892. doi: 10.1002/pen.22155. DOI

Porubska M., Janigova I., Jomova K., Chodak I. The Effect of Electron Beam Irradiation on Properties of Virgin and Glass Fiber-reinforced Polyamide 6. Radiat. Phys. Chem. 2014;102:159–166. doi: 10.1016/j.radphyschem.2014.04.037. DOI

Radiation Crosslinking. [(accessed on 13 May 2019)]; Available online: http://en.bgs.eu/wp-content/uploads/2017/02/BGS_radiation_crosslinking_en-1.pdf.

Manas D., Ovsik M., Mizera A., Manas M., Hylova L., Bednarik M., Stanek M. The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers. 2018;10:158. doi: 10.3390/polym10020158. PubMed DOI PMC

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI

Manas D., Mizera A., Navratil J., Manas M., Ovsik M., Sehnalek S., Stoklasek P. The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation. Polymers. 2018;10:1057. doi: 10.3390/polym10101057. PubMed DOI PMC

Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical properties changes of irradiated thermoplastic elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC

Manas D., Bednarik M., Mizera A., Manas M., Ovsik M., Stoklasek P. Effect of beta radiation on the quality of the bonded joint for difficult to bond polyolefins. Polymers. 2019;11:1863. doi: 10.3390/polym11111863. PubMed DOI PMC

Rahel’ J., Cernak M., Hudec I., Brablec A., Trunec D., Chodák I. Atmospheric-pressure plasma treatment of ultra-high-molecular-weight polypropylene fabric. Czechoslov. J. Phys. 2000;50:445–448. doi: 10.1007/BF03165926. DOI

Murray K.A., Kennedy J.E., McEvoy B., Vrain O., Ryan D., Higginbotham C.L. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012;81:962–966. doi: 10.1016/j.radphyschem.2011.09.011. DOI

Hama Y., Oka T., Uchiyama J., Kanbe H., Nabeta K., Yatagai F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001;62:133–139. doi: 10.1016/S0969-806X(01)00430-3. DOI

Carpentieri I., Brunella V., Bracco P., Paganini M.C. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011;96:624–629. doi: 10.1016/j.polymdegradstab.2010.12.014. DOI

Costa L., Carpentieri I., Bracco P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008;93:1695–1703. doi: 10.1016/j.polymdegradstab.2008.06.003. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...