Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.1.05/2.1.00/19.0376
undefined <span style="color:gray;font-size:10px;">undefined</span>
IGA/FT/2020/003
undefined <span style="color:gray;font-size:10px;">undefined</span>
LO1303
undefined <span style="color:gray;font-size:10px;">undefined</span>
PubMed
32093045
PubMed Central
PMC7078636
DOI
10.3390/ma13040929
PII: ma13040929
Knihovny.cz E-resources
- Keywords
- X-ray, crosslinking, electron rays, gel content, nano-indentation, polymers, spectroscopy,
- Publication type
- Journal Article MeSH
This study's goal was to describe the influence of a wide range of ionizing beta radiation upon the changes in surface layer mechanical properties and structural modifications of selected types of polymer. Radiation crosslinking is a process whereby the impingement of high-energy electrons adjusts test sample structures, thus enhancing the useful properties of the material, e.g., hardness, wear-resistance, and creep, in order that they may function properly during their technical use. The selected polymers tested were polyolefin polymers like polyethylene (Low-density polyethylene LDPE, High-density polyethylene HDPE). These samples underwent exposure to electron radiation of differing dosages (33, 66, 99, 132, 165, and 198 kGy). After the crosslinking process, the samples underwent testing of the nano-mechanical properties of their surface layers. This was done by means of a state-of-the-art indentation technique, i.e., depth-sensing indentation (DSI), which detects the immediate change in the indentation depth associated with the applied force. Indeed, the results indicated that the optimal radiation dosage increased the mechanical properties by up to 57%; however, the beneficial levels of radiation varied with each material. Furthermore, these modifications faced examination from the structural perspective. For this purpose, a gel test, Raman spectroscopy, and crystalline portion determination by X-ray all confirmed the assumed trends.
See more in PubMed
Drobný J.G. Radiation Technology for Polymers. CRC Press; Boca Raton, FL, USA: 2010.
Salomon W.A., Loan L.D. Radiation crosslinking of poly(vinyl chloride) J. Appl. Polym. Sci. 1972;16:671–682. doi: 10.1002/app.1972.070160312. DOI
Mizera A., Chalupa P., Hudec I. Impact resistance of high-density polyethylene against falling penetrator with different potential energy. Matec Web Conf. 2017;125:02050. doi: 10.1051/matecconf/201712502050. DOI
Cassidy J., Nesaei S., McTaggart R., Delfanian F. Mechanical response of high density polyethylene to gamma radiatin from a Cobalt-60 irradiator. Polym. Test. 2016;52:111–116. doi: 10.1016/j.polymertesting.2016.04.005. DOI
Gheysari D., Behjat A., Haji-Saeid M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2001;37:295–302. doi: 10.1016/S0014-3057(00)00122-1. DOI
Zaki M.F., Elshaer Y.H., Taha D.H. The alterations in high density polyethylene properties with gamma irradiation. Radiat. Phys. Chem. 2017;139:90–96. doi: 10.1016/j.radphyschem.2017.02.058. DOI
Mohammadi M., Ziaie F., Majdabadi A., Akhavan A., Shafaei M. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite. Radiat. Phys. Chem. 2017;130:229–235. doi: 10.1016/j.radphyschem.2016.09.002. DOI
Romano R.S.G., Oliani W.L., Parra D.F., Lugao A.B. Accelerated environmental degradation of gamma irradiated polypropylene and thermal analysis. J. Anal. Calorim. 2018;131:823–828. doi: 10.1007/s10973-017-6653-1. DOI
Wang W., Zhang X., Mao Z., Zhao W. Effects of gamma radiation on the impact strength of polypropylene (PP)/high density polyethylene (HDPE) blends. Results. Phys. 2019;12:2169–2174. doi: 10.1016/j.rinp.2019.02.020. DOI
Köpplmayr T., Milosavljevic I., Aigner M., Hasslacher R., Plank B., Salaberger D., Miethlinger J. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 2013;32:535–544. doi: 10.1016/j.polymertesting.2013.02.002. DOI
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. Wiley; Hoboken, NJ, USA: 2012. p. 415.
Drobny J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications. Elsevier/William Andrew; Oxford, UK: 2013. p. 298.
Satapathy S., Chattopadhyay S., Chakrabarty K.K., Nag A., Tiwari K.N., Tikku V.K., Nando G.B. Studies on the effect of electron beam irradiation on waste polyethylene and its blends with virgin polyethylene. J. Appl. Polym. Sci. 2006;101:715–726. doi: 10.1002/app.23970. DOI
Gehring J., Zyball A. Radiation crosslinking of polymers-status, current issues, trends and challenges. Radiat. Phys. Chem. 1995;46:931–936. doi: 10.1016/0969-806X(95)00295-9. DOI
Bradler P., Fischer J., Wallner G.M., Lang R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications—Basic Thermo-Analytical and Mechanical Properties. Polymers. 2018;10:969. doi: 10.3390/polym10090969. PubMed DOI PMC
Zhang D., Yang S., Cheng Y., Liu S., Zhao H., Gu J. 60Co γ-ray Irradiation Crosslinking of Chitosan/Graphene Oxide Composite Film: Swelling, Thermal Stability, Mechanical, and Antibacterial Properties. Polymers. 2018;10:294. doi: 10.3390/polym10030294. PubMed DOI PMC
Mizera A., Manas M., Manas D., Holik Z., Stanek M., Navratil J., Bednarik M. Temperature Stability of Modified PBT by Radiation Cross-Linking. Adv. Mater. Res. 2014;1025–1026:256–260. doi: 10.4028/www.scientific.net/AMR.1025-1026.256. DOI
Navratil J., Manas M., Mizeraa A., Bednarik M., Stanek M., Danek M. Recycling of irradiated high-density polyethylene. Radiat. Phys. Chem. 2015;106:68–72. doi: 10.1016/j.radphyschem.2014.06.025. DOI
Malinowski R. Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. Int. J. Adv. Manuf. Technol. 2016;87:3307–3314. doi: 10.1007/s00170-016-8713-2. DOI
Gourdin W.H., Datte P., Jensen W., Khater H., Pearson M., Girard S., Paillet P., Alozy E. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE. Fusion Eng. Des. 2016;112:343–348. doi: 10.1016/j.fusengdes.2016.07.005. DOI
Al Naim A., Alnaim N., Ibrahim S.S., Metwally S.M. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017;10:165–171. doi: 10.1016/j.jrras.2017.03.004. DOI
Seefried A., Drummer D. The effects of radiation cross-linking and process parameters on the behavior of polyamide 12 in vacuum thermoforming. Polym. Eng. Sci. 2012;52:884–892. doi: 10.1002/pen.22155. DOI
Porubska M., Janigova I., Jomova K., Chodak I. The Effect of Electron Beam Irradiation on Properties of Virgin and Glass Fiber-reinforced Polyamide 6. Radiat. Phys. Chem. 2014;102:159–166. doi: 10.1016/j.radphyschem.2014.04.037. DOI
Radiation Crosslinking. [(accessed on 13 May 2019)]; Available online: http://en.bgs.eu/wp-content/uploads/2017/02/BGS_radiation_crosslinking_en-1.pdf.
Manas D., Ovsik M., Mizera A., Manas M., Hylova L., Bednarik M., Stanek M. The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers. 2018;10:158. doi: 10.3390/polym10020158. PubMed DOI PMC
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Manas D., Mizera A., Navratil J., Manas M., Ovsik M., Sehnalek S., Stoklasek P. The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation. Polymers. 2018;10:1057. doi: 10.3390/polym10101057. PubMed DOI PMC
Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical properties changes of irradiated thermoplastic elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC
Manas D., Bednarik M., Mizera A., Manas M., Ovsik M., Stoklasek P. Effect of beta radiation on the quality of the bonded joint for difficult to bond polyolefins. Polymers. 2019;11:1863. doi: 10.3390/polym11111863. PubMed DOI PMC
Rahel’ J., Cernak M., Hudec I., Brablec A., Trunec D., Chodák I. Atmospheric-pressure plasma treatment of ultra-high-molecular-weight polypropylene fabric. Czechoslov. J. Phys. 2000;50:445–448. doi: 10.1007/BF03165926. DOI
Murray K.A., Kennedy J.E., McEvoy B., Vrain O., Ryan D., Higginbotham C.L. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012;81:962–966. doi: 10.1016/j.radphyschem.2011.09.011. DOI
Hama Y., Oka T., Uchiyama J., Kanbe H., Nabeta K., Yatagai F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001;62:133–139. doi: 10.1016/S0969-806X(01)00430-3. DOI
Carpentieri I., Brunella V., Bracco P., Paganini M.C. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011;96:624–629. doi: 10.1016/j.polymdegradstab.2010.12.014. DOI
Costa L., Carpentieri I., Bracco P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008;93:1695–1703. doi: 10.1016/j.polymdegradstab.2008.06.003. DOI
Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation