The Electrical, Mechanical and Surface Properties of Thermoplastic Polyester Elastomer Modified by Electron Beta Radiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30960982
PubMed Central
PMC6403969
DOI
10.3390/polym10101057
PII: polym10101057
Knihovny.cz E-zdroje
- Klíčová slova
- electrical and mechanical properties, irradiation, radiation cross-linking, thermoplastic polyester elastomer,
- Publikační typ
- časopisecké články MeSH
The main advantages of Thermoplastic Polyester Elastomers (TPE-E) are their elastomer properties as well as their ability to be processed in the same way as thermoplastic polymers (e.g., injection moulding, compression moulding and extrusion). However, TPE-Es' properties, mainly their mechanical properties and thermal characteristics, are not as good as those of elastomers. Because of this TPE-Es are often modified with the aim of improving their properties and extending their range of application. Radiation cross-linking using accelerated electron beams is one of the most effective ways to change virgin polymers' properties significantly. Their electrical (that is to say permittivity and resistivity measurements), mechanical (that is, tensile and impact tensile tests), as well as surface (that is, nano-indentation) properties were measured on modified/cross-linked TPE-E specimens with and/or without a cross-linking agent at irradiation doses of 0, 33, 66, 99, 132, 165 and 198 kGy. The data acquired from these procedures show significant changes in the measured properties. The results of this study allow the possibility of determining the proper processing parameters and irradiation doses for the production of TPE-E products which leads to the enlargement of their application in practice.
Zobrazit více v PubMed
Kricheldorf H. Thermoplastic Elastomers. Hanser Gardner Publications; Cincinnati, OH, USA: 2004.
Spontak R.J., Patel N.P. Thermoplastic elastomers: fundamentals and applications. Curr. Opin. Colloid Interface Sci. 2000;5:333–340. doi: 10.1016/S1359-0294(00)00070-4. DOI
Drobny J. Handbook of Thermoplastic Elastomers. William Andrew Publisher; Norwich, NY, USA: 2014.
Nagai Y., Ogawa T., Zhen L.Y., Nishimoto Y., Ohishi F. Analysis of weathering of thermoplastic polyester elastomers—I. Polyether-polyester elastomers. Polym. Degrad. Stab. 1997;56:115–121. doi: 10.1016/S0141-3910(96)00189-9. DOI
Nagai Y., Ogawa T., Nishimoto Y., Ohishi F. Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer. Polym. Degrad. Stab. 1999;65:217–224. doi: 10.1016/S0141-3910(99)00007-5. DOI
Kalfoglou N.K. Thermomechanical studies of semicrystalline polyether–ester copolymers. Effect of thermal, mechanical, and solvent treatment. J. Appl. Polym. Sci. 1977;21:543–554. doi: 10.1002/app.1977.070210220. DOI
Hussain M., Ko Y.H., Choa Y.H. Significant enhancement of mechanical and thermal properties of thermoplastic polyester elastomer by polymer blending and nanoinclusion. J. Nanomater. 2016;2016:69. doi: 10.1155/2016/8515103. DOI
Varsavas S.D., Kaynak C. Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide. Compos. Commun. 2018;8:24–30. doi: 10.1016/j.coco.2018.03.003. DOI
Chen J., Lv Q., Wu D., Yao X., Wang J., Li Z. Nucleation of a Thermoplastic Polyester Elastomer Controlled by Silica Nanoparticles. Ind. Eng. Chem. Res. 2016;55:5279–5286. doi: 10.1021/acs.iecr.5b04464. DOI
Sreekanth M., Joseph S., Mhaske S., Mahanwar P., Bambole V. Effects of Mica and Fly Ash Concentration on the Properties of Polyester Thermoplastic Elastomer Composites. J. Thermoplast. Compos. Mater. 2011;24:317–331. doi: 10.1177/0892705710389293. DOI
Helal E., David E., Fréchette M., Demarquette N.R. Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: Correlation between rheological, thermal, electrical and dielectric properties. Eur. Polym. J. 2017;94:68–86. doi: 10.1016/j.eurpolymj.2017.06.038. DOI
Ju S., Zhang H., Chen M., Zhang C., Chen X., Zhang Z. Improved electrical insulating properties of LDPE based nanocomposite: Effect of surface modification of magnesia nanoparticles. Compos. Part A Appl. Sci. Manuf. 2014;66:183–192. doi: 10.1016/j.compositesa.2014.07.003. DOI
Qiu Y., Wang J., Wu D., Wang Z., Zhang M., Yao Y., Wei N. Thermoplastic polyester elastomer nanocomposites filled with graphene: Mechanical and viscoelastic properties. Compos. Sci. Technol. 2016;132:108–115. doi: 10.1016/j.compscitech.2016.07.005. DOI
Qiu Y., Wu D., Xie W., Wang Z., Peng S. Thermoplastic polyester elastomer composites containing two types of filler particles with different dimensions: Structure design and mechanical property control. Compos. Struct. 2018;197:21–27. doi: 10.1016/j.compstruct.2018.05.035. DOI
Helal E., Demarquette N., Amurin L., David E., Carastan D., Fréchette M. Styrenic block copolymer-based nanocomposites: Implications of nanostructuration and nanofiller tailored dispersion on the dielectric properties. Polymer. 2015;64:139–152. doi: 10.1016/j.polymer.2015.03.026. DOI
Radhakrishnan S., Saini D.R. Electrical properties of polyester elastomer composites containing metallic fillers. J. Mater. Sci. 1991;26:5950–5956. doi: 10.1007/BF01130140. DOI
Bae J., Lee S., Kim B.C., Cho H.H., Chae D.W. Polyester-based thermoplastic elastomer/MWNT composites: Rheological, thermal, and electrical properties. Fibers Polym. 2013;14:729–735. doi: 10.1007/s12221-013-0729-8. DOI
Drobny J. Ionizing Radiation and Polymers: Principles, Technology and Applications. William Andrew Elsevier Health Sciences Distributor; Norwich, UK: 2013.
Rouif S. Radiation cross-linked polymers: Recent developments and new applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2005;236:68–72. doi: 10.1016/j.nimb.2005.03.252. DOI
Ghazali Z., Johnson A., Dahlan K. Radiation crosslinked thermoplastics natural rubber (TPNR) foams. Radiat. Phys. Chem. 1999;55:73–79. doi: 10.1016/S0969-806X(98)00296-5. DOI
Šarac T., Quiévy N., Gusarov A., Konstantinović M. Influence of gamma-irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat. Phys. Chem. 2016;125:151–155. doi: 10.1016/j.radphyschem.2016.03.024. DOI
Boukezzi L., Rondot S., Jbara O., Boubakeur A. Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation. Radiat. Phys. Chem. 2018;149:110–117. doi: 10.1016/j.radphyschem.2018.04.006. DOI
Lee J.M., Choi B.H., Moon J.S., Lee E.S. Determination of the tear properties of thermoplastic polyester elastomers (TPEEs) using essential work of fracture (EWF) test method. Polym. Test. 2009;28:854–865. doi: 10.1016/j.polymertesting.2009.07.008. DOI
Jamaluddin N., Razaina M., Ishak Z.M. Mechanical and Morphology Behaviours of Polybutylene (succinate)/Thermoplastic Polyurethaneblend. Procedia Chem. 2016;19:426–432. doi: 10.1016/j.proche.2016.03.034. DOI
Huang J., Wang J., Qiu Y., Wu D. Mechanical properties of thermoplastic polyester elastomer controlled by blending with poly(butylene terephthalate) Polym. Test. 2016;55:152–159. doi: 10.1016/j.polymertesting.2016.08.020. DOI
Huang J., Qiu Y., Wu D., Wang J. New Way To Tailor Thermal Stability and Mechanical Properties of Thermoplastic Polyester Elastomer: Relations between Interfacial Structure and Surface Treatment of Spodumene Slag. Ind. Eng. Chem. Res. 2017;56:6239–6246. doi: 10.1021/acs.iecr.7b00904. DOI
Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical Properties Changes of Irradiated Thermoplastic Elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC
International Organization for Standardization . Plastics–Determination of Tensile Properties. International Organization for Standardization; Geneva, Switzerland: 2012.
International Organization for Standardization . Practice for Calibration of Routine Dosimetry Systems for Radiation Processing. International Organization for Standardization; Geneva, Switzerland: 2013.
Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM International; West Conshohocken, PA, USA: 2016. ASTM International Standard.
Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM International; West Conshohocken, PA, USA: 2014. ASTM International Standard.
International Organization for Standardization . Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC methods)—Volume Resistance and Volume Resistivity—General Method. International Organization for Standardization; Geneva, Switzerland: 2016.
International Organization for Standardization . Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization; Geneva, Switzerland: 2017.
International Organization for Standardization . Plastics—Determination of Tensile-Impact Strength. International Organization for Standardization; Geneva, Switzerland: 2004.
International Organization for Standardization . Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. International Organization for Standardization; Geneva, Switzerland: 2015.
Manas M., Manas D., Stanek M., Mizera A., Ovsik M. Modification of polymer properties by irradiation properties of thermoplastic electromer after radiation cross-linking. Asian J. Chem. 2013;25:5124–5128.
The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation
The Influence of Surface Quality on Flow Length and Micro-Mechanical Properties of Polycarbonate
Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation
Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation