The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38399828
PubMed Central
PMC10892857
DOI
10.3390/polym16040450
PII: polym16040450
Knihovny.cz E-zdroje
- Klíčová slova
- beta radiation, cross-linking, injection molding, mechanical properties, oxidation, polymers, regression, surface properties,
- Publikační typ
- časopisecké články MeSH
The modification of polymer materials' useful properties can be applicable in many industrial areas due to the ability to make commodity and technical plastics (plastics that offer many benefits, such as processability, by injection molding) useful in more demanding applications. In the case of injection-molded parts, one of the most suitable methods for modification appears to be high-energy irradiation, which is currently used primarily for the modification of mechanical and thermal properties. However, well-chosen doses can effectively modify the properties of the surface layer as well. The purpose of this study is to provide a complex description of high-energy radiation's (β radiation) influence on the useful properties of injection-molded parts made from common polymers. The results indicate that β radiation initiates the cross-linking process in material and leads to improved mechanical properties. Besides the cross-linking process, the material also experiences oxidation, which influences the properties of the surface layer. Based on the measured results, the main outputs of this study are appropriately designed regression models that determine the optimal dose of radiation.
Zobrazit více v PubMed
Dua R., Rashad Z., Spears J., Dunn G., Maxwell M. Applications of 3D-printed PEEK via fused filament fabrication: A Systematic review. Polymers. 2021;13:4046. doi: 10.3390/polym13224046. PubMed DOI PMC
Friedman M., Walsh G. High performance films: Review of new materials and trends. Polym. Eng. Sci. 2002;42:1756–1788. doi: 10.1002/pen.11069. DOI
BGS: Radiation Crosslinking and Radiation Sterilization. [(accessed on 13 November 2023)]. Available online: https://en.bgs.eu.
Peng Y.Y., Srinivas S., Narain R. Polymer Science and Nanotechnology. Elsevier; Amsterdam, The Netherlands: 2020. Modification of polymers; pp. 95–104. DOI
Manas D., Bednarik M., Mizera A., Manas M., Ovsik M., Stoklasek P. Effect of beta radiation on the quality of the bonded joint for difficult to bond polyolefins. Polymers. 2019;11:1863. doi: 10.3390/polym11111863. PubMed DOI PMC
Sanchis M., Blanes V., Blanes M., Garcia D., Balart R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006;42:1558–1568. doi: 10.1016/j.eurpolymj.2006.02.001. DOI
Ebnesajjad S. Surface Treatment of Materials for Adhesion Bonding. William Andrew Publishing; Norwich, NY, USA: 2006. p. 260.
Pappas D., Bujanda A., Demaree J.D., Hirvonen J.K., Kosik W., Jensen R., McKnigh S. Surface modification of polyamide fibers and films using atmospheric plasmas. Surf. Coat. Technol. 2006;201:4384–4388. doi: 10.1016/j.surfcoat.2006.08.068. DOI
Tang J., Tang W., Yuan H., Jin R. Mechanical behaviors of ethylene/styrene interpolymer compatibilized polystyrene/polyethylene blends. J. Appl. Polym. Sci. 2007;104:4001–4007. doi: 10.1002/app.26031. DOI
Veilleux J., Rodrigue D. Properties of recycled PS/SBR blends: Effect of SBR pretreatment. Prog. Rubber Plast. Recycl. Technol. 2016;32:111–128. doi: 10.1177/147776061603200301. DOI
Alves A.C.L., Grande R., Carvalho A.J.F. Thermal and mechanical properties of thermoplastic starch and poly(vinyl alcohol-co-ethylene) blends. J. Renew. Mater. 2019;7:245–252. doi: 10.32604/jrm.2019.00833. DOI
Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque M.A., Abdelaal A., Sojoudi H. Surface modification of polymers: Methods and applications. Adv. Mater. Interfaces. 2018;5:1801247. doi: 10.1002/admi.201801247. DOI
Encinas N., Díaz-Benito B., Abenojar J., Martínez M.A. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf. Coat. Technol. 2010;205:396–402. doi: 10.1016/j.surfcoat.2010.06.069. DOI
Dryakhlov V.O., Shaikhiev I.G., Galikhanov M.F., Sverguzova S.V. Modification of polymeric membranes by corona discharge. Membr. Membr. Technol. 2020;2:195–202. doi: 10.1134/S2517751620030038. DOI
Yasuda H., Gazicki M. Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials. 1982;3:68–77. doi: 10.1016/0142-9612(82)90036-9. PubMed DOI
Zhu G., Su Y., Bai P., Chen J., Jing Q., Yang W., Wang Z.L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano. 2014;8:6031–6037. doi: 10.1021/nn5012732. PubMed DOI
Van Deynse A., Cools P., Leys C., Morent R., De Geyter N. Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces. Surf. Coat. Technol. 2014;258:359–367. doi: 10.1016/j.surfcoat.2014.08.073. DOI
Bradler P.R., Fischer J., Wallner G.M., Lang R.W. Characterization of irradiation crosslinked polyamides for solar thermal applications—Basic thermo-analytical and mechanical properties. Polymers. 2018;10:969. doi: 10.3390/polym10090969. PubMed DOI PMC
Manas D., Mizera A., Navratil M., Manas M., Ovsik M., Sehnalek S., Stoklasek P. The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation. Polymers. 2018;10:1057. doi: 10.3390/polym10101057. PubMed DOI PMC
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. Wiley; Hoboken, NJ, USA: 2012. p. 415.
Drobny J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications. Elsevier/William Andrew; Oxford, UK: 2013. p. 298.
Lee J.-G., Jeong J.-O., Jeong S.-I., Park J.-S. Radiation-based crosslinking technique for enhanced thermal and mechanical properties of HDPE/EVA/PU blends. Polymers. 2021;13:2832. doi: 10.3390/polym13162832. PubMed DOI PMC
Gheysari D., Behjat A., Haji-Saeid M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2001;37:295–302. doi: 10.1016/S0014-3057(00)00122-1. DOI
Jeong J.-O., Oh Y.-H., Jeong S.-I., Park J.-S. Optimization of the Physical Properties of HDPE/PU Blends through Improved Compatibility and Electron Beam Crosslinking. Polymers. 2022;14:3607. doi: 10.3390/polym14173607. PubMed DOI PMC
Ovsik M., Stanek M., Dockal A., Vanek J., Hylova L. Influence of cross-linking agent concentration/beta radiation surface modification on the micro-mechanical properties of polyamide 6. Materials. 2021;14:6407. doi: 10.3390/ma14216407. PubMed DOI PMC
Kopal I., Vršková J., Labaj I., Ondrušová D., Hybler P., Harničárová M., Valíček J., Kušnerová M. The effect of high-energy ionizing radiation on the mechanical properties of a melamine resin, phenol-formaldehyde resin, and nitrile rubber blend. Materials. 2018;11:2405. doi: 10.3390/ma11122405. PubMed DOI PMC
Ovsik M., Stanek M., Bednarik M. Evaluation of cross-linked polyamide 6 micro-indentation properties: TAIC concentration and electron radiation intensity. Materials. 2023;16:2391. doi: 10.3390/ma16062391. PubMed DOI PMC
Malinowski R. Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. Int. J. Adv. Manuf. Technol. 2016;87:3307–3314. doi: 10.1007/s00170-016-8713-2. DOI
Ovsik M., Manas M., Stanek M., Dockal A., Vanek J., Mizera A., Adamek M., Stoklasek P. Polyamide surface layer nano-indentation and thermal properties modified by irradiation. Materials. 2020;13:2915. doi: 10.3390/ma13132915. PubMed DOI PMC
Hama Y., Oka T., Uchiyama J., Kanbe H., Nebeta K., Yatagai F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001;62:133–139. doi: 10.1016/S0969-806X(01)00430-3. DOI
Buttafava A., Tavares A., Arimondi M., Zaopo A., Nesti S., Dondi D., Mariani M., Faucitano A. Dose rate effects on the radiation induced oxidation of polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007;265:221–226. doi: 10.1016/j.nimb.2007.08.091. DOI
Mouaci S., Saidi M., Saidi-Amroun N. Oxidative degradation and morphological properties of gamma-irradiated isotactic polypropylene films. Micro Nano Lett. 2017;12:478–481. doi: 10.1049/mnl.2016.0812. DOI
Holik Z., Danek M., Manas M., Cerny J., Malochova M. The influence of ionizing radiation on chemical resistance of polymers. Int. J. Mech. 2011;5:210–217.
Holik Z., Danek M., Manas M., Cerny J. Influence of the amount of cross-linking agent on properties of irradiated polyamide 6. Int. J. Mech. 2011;5:218–225.
Plasticss—Determination of Tensile Properties—Part 1: General Principles. CEN; Brussels, Belgium: 2019.
Plasticss—Determination of Tensile Propertiess—Part 2: Test Conditions for Moulding and Extrusion Plastic. CEN; Brussels, Belgium: 2012.
Plastics—Determination of Flexural Properties. CEN; Brussels, Belgium: 2019.
Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle. CEN; Brussels, Belgium: 2009.
Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. CEN; Brussels, Belgium: 2009.
Bednarik M., Mizera A., Manas M., Navratil M., Huba J., Achbergerova E., Stoklasek P. Influence of the β− radiation/cold atmospheric-pressure plasma surface modification on the adhesive bonding of polyolefins. Materials. 2021;14:76. doi: 10.3390/ma14010076. PubMed DOI PMC
Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, 2nd ed. ASTM International; West Conshohocken, PA, USA: 2013.
Kaelble D.H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 1970;2:66–81. doi: 10.1080/0021846708544582. DOI
Rabel W. Aspekte der benetzungstheorie und ihre anwendung auf die untersuchung und veränderung der oberflächeneigenschaften von polymeren. Farbe Lacke. 1971;77:997–1005.
Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI
Schrader M.E., Loeb G.I. Modern Approaches to Wettability. Springer; Boston, MA, USA: 1992. Online. DOI
Kwok D.Y., Neumann A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999;81:167–249. doi: 10.1016/S0001-8686(98)00087-6. DOI
Erbil H. Surface Chemistry of Solid and Liquid Interfaces. Blackwell; Oxford, UK: 2006. p. 352. Online. DOI
Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM International; West Conshohocken, PA, USA: 2016.
Manas D., Ovsik M., Mizera A., Manas M., Hylova L., Bednarik M., Stanek M. The Effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers. 2018;10:158. doi: 10.3390/polym10020158. PubMed DOI PMC
Meloun M., Militky J. A Compendium of Statistical Data Processing. Karolinum; Prague, Czech Republic: 2013. p. 984.
Rivaton A., Lalande D., Gardette J.L. Influence of the structure on the γ- irradiation of polypropylene and on the post-irradiation effects. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004;222:187–200. doi: 10.1016/j.nimb.2004.02.012. DOI
Carpentieri I., Brunella V., Bracco P., Paganini M.C., Del Prever E.M.B., Luda M.P., Bonomi S., Costa L. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011;96:624–629. doi: 10.1016/j.polymdegradstab.2010.12.014. DOI
Costa L., Carpentieri I., Bracco P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008;93:1695–1703. doi: 10.1016/j.polymdegradstab.2008.06.003. DOI
Holik Z., Manas M., Stanek M., Danek M., Kocourek J. Improvement of mechanical and termomechanical properties of polyethylene by irradiation crosslinking. Chem. Listy. 2009;103:60–63.
Manas M., Stanek M., Manas D., Danek M., Holik Z. Modification of polyamides properties by irradiation. Chem. Listy. 2009;103:24–28.
Khonakdar H.A., Morshedian J., Mehrabzadeh M., Wagenknecht U., Jafari S.H. Thermal and shrinkage behaviour of stretched peroxide-crosslinked high-density polyethylene. Eur. Polym. J. 2003;39:1729–1734. doi: 10.1016/S0014-3057(03)00076-4. DOI
Piątek-Hnat M., Bomba K., Pęksiński J., Kozłowska A., Sośnicki J.G., Idzik T.J. Effect of E-beam irradiation on thermal and mechanical properties of ester elastomers containing multifunctional alcohols. Polymers. 2020;12:1043. doi: 10.3390/polym12051043. PubMed DOI PMC
Motaleb K.Z.M.A., Abakeviciene B., Milasius R. Development and characterization of bio-composites from the plant wastes of water hyacinth and sugarcane bagasse: Effect of water repellent and gamma radiation. Polymers. 2023;15:1609. doi: 10.3390/polym15071609. PubMed DOI PMC
Egghe T., Van Guyse F.R., Ghobeira R., Morent R., Hoogenboom R., De Geyter N. Evaluation of cross-linking and degradation processes occurring at polymer surfaces upon plasma activation via size-exclusion chromatography. Polym. Degrad. Stab. 2021;187:109543. doi: 10.1016/j.polymdegradstab.2021.109543. DOI
Gheysari D., Behjat A. Radiation crosslinking of LDPE and HDPE with 5 and 10 MeV electron beams. Eur. Polym. J. 2001;37:2011–2016. doi: 10.1016/S0014-3057(01)00084-2. DOI