Influence of Cross-Linking Agent Concentration/Beta Radiation Surface Modification on the Micro-Mechanical Properties of Polyamide 6
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34771933
PubMed Central
PMC8585157
DOI
10.3390/ma14216407
PII: ma14216407
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier-transform infrared spectroscopy, electron beam, indentation hardness, micro-indentation, polyamide, triallyl isocyanurate,
- Publikační typ
- časopisecké články MeSH
This study focuses on the problematic of polyamide 6 containing various concentrations of cross-linking agent that was exposed to electron radiation. It is important to improve the material properties of polymers as much as possible. This endeavor can be realized by numerous methods, one of which is radiation exposure. This study investigates the effect of electron beam radiation in doses ranging from 66 to 132 kGy on the micro-mechanical properties of polymers, specifically polyamide 6 filled with 1, 3 and 5 wt.% of cross-linking agent triallyl isocyanurate (TAIC). The changes in the material brought by the radiation exposure were quantified by measurements of indentation hardness and modulus, which were the main measured micro-mechanical properties. Furthermore, thermo-mechanical analysis (TMA) was chosen to confirm the results of the material cross-linking, while the effect of degradation was investigated by Fourier-transform infrared spectroscopy (FTIR). In pursuit of complete evaluation, the topography of the test subject's surface was explored by atomic force microscopy (AFM). The optimal concentration/radiation ratio was found in polyamide 6 enriched by 5 wt.% concentration of TAIC, which was irradiated by 132 kGy. Material treated in such a way had its indentation hardness by 33% and indentation modulus improved by 26% in comparison with the untreated material. These results were subsequently confirmed by the TMA and FTIR methods.
Zobrazit více v PubMed
Drobny J.G. Radiation Technology for Polymers. CRC Press; Boca Raton, FL, USA: 2010.
Mark J.E. Physical Properties of Polymers Handbook. Springer Science + Business Media, LLC; Berlin/Heidelberg, Germany: 2007.
Dadbin S., Frounchi M., Goudarzi D. Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polym. Degrad. Stab. 2005;89:436–441. doi: 10.1016/j.polymdegradstab.2005.02.001. DOI
Pramanik N.K., Haldar R.S., Bhardwaj Y.K., Sabharwal S., Niyogi U.K., Khandal R.K. Radiation processing of Nylon 6 by e-beam for improved properties. Radiat. Phys. Chem. 2009;78:199–205. doi: 10.1016/j.radphyschem.2008.11.004. DOI
Holík Z., Daněk M., Maňas M., Černý J. Influence of the Amount of Cross-linking Agent on Properties of Irradiated Polyamide 6. Int. J. Mech. 2011;5:218–225.
Ovsik M., Manas D., Manas M., Stanek M., Sanda S., Kyas K., Reznicek M. Microhardness of PA6 Influenced by Beta Low Irradiation Doses. Int. J. Math. Comput. Simul. 2012;6:575–583.
Porubska M., Janigova I., Jomova K., Hodak I.C. The effect of electron beam irradiation on properties of virgin and glass fiber-reinforced polyamide 6. Radiat. Phys. Chem. 2014;102:159–166. doi: 10.1016/j.radphyschem.2014.04.037. DOI
Adem E., Burillo G., del Castillo L.F., Vasquez M., Avalos-Borja M., Marcos-Fernandez A. Polyamide-6: The effects on mechanical and physiochemical properties by electron beam irradiation at different temperatures. Radiat. Phys. Chem. 2014;97:165–171. doi: 10.1016/j.radphyschem.2013.11.008. DOI
Manas D., Ovsik M., Manas M., Stanek M., Spanhelova M., Bednarik M., Senkerik V. Influence of Content of Crosslinking Agent on the Micromechanical Properties of Glass-Filled Polyamide 6. Appl. Mech. Mater. 2015;752–753:357–362. doi: 10.4028/www.scientific.net/AMM.752-753.357. DOI
Shin B.Y., Ha M.H., Han D.H. Morphological, Rheological, and Mechanical Properties of Polyamide 6/Polypropylene Blends Compatibilized by Electron-Beam Irradiation in the Presence of a Reactive Agent. Materials. 2016;9:342. doi: 10.3390/ma9050342. PubMed DOI PMC
Manas D., Ovsik M., Mizera A., Manas M., Hylova L., Bednarik M., Stanek M. The Effect of Irradiation on Mechanical and Thermal Properteis of Selected types of Polymers. Polymers. 2018;10:158. doi: 10.3390/polym10020158. PubMed DOI PMC
Bradler P.R., Fischer J., Wallner G.M., Lang R.W. Characterization of irradiation crosslinked polyamides for solar thermal applications—Fatigue properties. Compos. Sci. Technol. 2019;175:55–59. doi: 10.1016/j.compscitech.2019.03.009. PubMed DOI PMC
Yang Y., Xi C., Lu N., Gao F. Injection Molding Process Control, Monitoring and Optimization. Carl Hanser Verlag GmbH & Co., KG; München, Germany: 2016.
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2012.
Porubska M., Babic D., Janigova I., Slouf M., Klaudia J., Chodak I. The effect of gamma irradiation in air and inert atmosphere on structure and properties of unfilled or glass fibre-reinforced polyamide 6. Polym. Bull. 2016;73:1775–1794. doi: 10.1007/s00289-015-1576-0. DOI
Beaumont J.P., Nagel R.L., Sherman R. Successful Injection Molding: Process, Design, and Simulation. Hanser Publishers; Munich, Germany: 2002.
Ashcroft W.R. Industrial Polymer Applications: Essential Chemistry and Technology. Royal Society of Chemistry; Cambridge, UK: 2017.
Ferreira T., Lopes P.E., Pontes A.J., Paiva M.C. Microinjection molding of polyamide 6. Polym. Adv. Technol. 2016;25:891–895. doi: 10.1002/pat.3322. DOI
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Manas D., Mizera A., Navratil J., Manas M., Ovsik M., Sehnalek S., Stoklasek P. The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation. Polymers. 2018;10:1057. doi: 10.3390/polym10101057. PubMed DOI PMC
Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical properties changes of irradiated thermoplastic elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC
Ovsik M., Manas M., Stanek M., Dockal A., Vanek J., Mizera A., Adamek M., Stoklasek P. Polyamide surface layer nano-indentation and thermal properties modified by irradiation. Materials. 2020;13:2915. doi: 10.3390/ma13132915. PubMed DOI PMC