The Effect of Irradiation on Mechanical and Thermal Properties of Selected Types of Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30966194
PubMed Central
PMC6414979
DOI
10.3390/polym10020158
PII: polym10020158
Knihovny.cz E-zdroje
- Klíčová slova
- TMA (thermo-mechanical analysis), X-ray, beta rays, crosslinking, gel content, micro-indentation,
- Publikační typ
- časopisecké články MeSH
This article deals with the influence of electron-beam radiation on the micro-mechanical, thermo-mechanical, and structural properties of selected polymers. In the search for the desired improvement of polymers, it is possible to use, inter alia, one particular possible modification-Namely, crosslinking-Which is a process during which macromolecular chains start to connect to each other and, thus, create the spatial network in the structure. In the course of the treatment of the ionizing radiation, two actions can occur: crosslinking and scission of macromolecules, or degradation. Both these processes run in parallel. Using the crosslinking technology, standard and technical polymers can acquire the more "expensive" high-tech polymeric material properties and, thus, replace these materials in many applications. The polymers that were tested were selected from across the whole spectra of thermoplastics, ranging from commodity polymers, technical polymers, as well as high-performance polymers. These polymers were irradiated by different doses of beta radiation (33, 66, 99, 132, 165, and 198 kGy). The micro-mechanical and thermo-mechanical properties of these polymers were measured. When considering the results, it is obvious that irradiation acts on each polymer differently but, always when the optimal dose was found, the mechanical properties increased by up to 36%. The changes of micro-mechanical and thermo-mechanical properties were confirmed by structural measurement when the change of the micro-hardness and modulus corresponded to the crystalline phase change as determined by X-ray and gel content.
Zobrazit více v PubMed
Khonakdar H.A., Jafari S.H., Wagenkecht U., Jehnichen D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat. Phys. Chem. 2006;75:78–86. doi: 10.1016/j.radphyschem.2005.05.014. DOI
Dadbin S., Frounchi M., Saeid M.H., Gangi F. Molecular structure and physical properties of E-beam crosslinked low-density polyethylene for wire and cable insulation applications. J. Appl. Polym. Sci. 2002;86:1959–1969. doi: 10.1002/app.11111. DOI
Tamboli S.M., Mhaske S.T., Kale D.D. Crosslinked polyethylene. Indian J. Chem. Technol. 2004;11:853–864.
Koike Y., Cakmak M. Role of molten fraction on the structural evolution in stretching and cooling of crosslinked low-density polyethylene: Real-time mechano-optical measurements. J. Polym. Sci. B Polym. Phys. 2005;43:1825–1841. doi: 10.1002/polb.20467. DOI
Nilsson S., Hjertberg T., Smeberg A. Structural effect on thermal properties and morphology in XLPE. Eur. Polym. J. 2010;46:1759–1769. doi: 10.1016/j.eurpolymj.2010.05.003. DOI
Mehrjerdi A.D., Zarrabi B.A., Cho S.W., Skrifvars M. Mechanical and Thermo-Physical Properties of High-Density Polyethylene Modified with Talc. J. Appl. Polym. Sci. 2013 doi: 10.1002/app.38945. DOI
Whelton A.J., Dietrich A.M. Critical considerations for the accelerated ageing of high-density polyethylene potable water materials. Polym. Degrad. Stab. 2009;94:1163–1175. doi: 10.1016/j.polymdegradstab.2009.03.013. DOI
Ahmad S.R., Xue C., Young R.J. The mechanisms of reinforcement of polypropylene by graphene nanoplateles. Mater. Sci. Eng. B. 2017;216:2–9. doi: 10.1016/j.mseb.2016.10.003. DOI
Lin J.H., Huang C.L., Liu C.F., Chen C.K., Lin Z.I., Lou C.W. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology. Materials. 2015;8:8279–8291. doi: 10.3390/ma8125451. PubMed DOI PMC
Sombatsompop N., Chaiwattanpipat W. Temperature profiles of glass fibre-filled polypropylene melts in injection moulding. Polym. Test. 2000;19:713–724. doi: 10.1016/S0142-9418(99)00047-1. DOI
Köpplmayr T., Milosavljevic I., Aigner M., Hasslacher R., Plank B., Salaberger D., Miethlinger J. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 2013;32:535–544. doi: 10.1016/j.polymertesting.2013.02.002. DOI
Metanawin T., Jamjumrus A., Metanawin S. Morphology, Mechanical and Thermal Properties of PBT-TiO2 Polymer Nanocomposite. MATEC Web Conf. 2015;30 doi: 10.1051/matecconf/20153001012. DOI
Ovsik M., Hylova L., Manas D., Manas M., Stanek M. Micro-Hardness of PBT Influenced by Beta Radiation. MATEC Web Conf. 2016;76 doi: 10.1051/matecconf/20167602024. DOI
Manas D., Manas M., Ovsik M., Stanek M., Chvatalova L., Stoklasek P., Hylova L. Micro-Hardness of Surface Layer of Irradiated Polybutene Terephthalate (PBT) MATEC Web Conf. 2016;76 doi: 10.1051/matecconf/20167602018. DOI
Baochun G., Quanliang Z., Yanda L., Mingliang D., Mingxian L., Demin J. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim. Acta. 2009;484:48–56.
Dadbin S., Frounchi M., Goudarzi D. Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polym. Degrad. Stab. 2005;89:436–441. doi: 10.1016/j.polymdegradstab.2005.02.001. DOI
Gehring J., Zyball A. Radiation Crosslinking of Polymers-status, Current Issues, Trends and Challenges. Radiat. Phys. Chem. 1995;46:4–6. doi: 10.1016/0969-806X(95)00295-9. DOI
Porubska M., Janigova I., Jomova K., Chodak I. The Effect of Electron Beam Irradiation on Properties of Virgin and Glass Fiber-reinforced Polyamide 6. Radiat. Phys. Chem. 2014;102:159–166. doi: 10.1016/j.radphyschem.2014.04.037. DOI
Uddin A.j., Gotoh Y., Ohkoshi Y., Nishino T., Endo R. Crystal Modulus of a New Semiaromatic Polyamide 9-T. Polym. Eng. Sci. 2012;52:331–337. doi: 10.1002/pen.22086. DOI
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2012.
Chapiro A. Radiation Chemistry of Polymeric Systems. Interscience Publishers; New York, NY, USA: John Wiley and Sons; New York, NY, USA: 1962. p. 503.
Miller A.A., Lawton E.J., Balwit J.S. Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation. J. Polym. Sci. 1954;14:503–504. doi: 10.1002/pol.1954.120147711. DOI
Makhlis F.A. Radiation Physics and Chemistry of Polymers. Halsted Press Book; New York, NY, USA: Jerusalem, Israel: 1975.
Drobný J.G. Radiation Technology for Polymers. CRC Press; Boca Raton, FL, USA: 2010.
Radiation Crosslinking. [(accessed on 10 January 2018)]; Available online: http://en.bgs.eu/wp-content/uploads/2017/02/BGS_radiation_crosslinking_en-1.pdf.
The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation
Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation