PpSP32-like protein as a marker of human exposure to Phlebotomus argentipes in Leishmania donovani foci in Bangladesh
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34273394
PubMed Central
PMC8575019
DOI
10.1016/j.ijpara.2021.05.006
PII: S0020-7519(21)00215-0
Knihovny.cz E-zdroje
- Klíčová slova
- Bangladesh, IgG antibodies, Leishmania donovani, Marker of exposure, Phlebotomus argentipes, Salivary glands,
- MeSH
- hmyzí proteiny * imunologie MeSH
- kousnutí a bodnutí epidemiologie MeSH
- Leishmania donovani MeSH
- lidé MeSH
- Phlebotomus * MeSH
- slinné proteiny a peptidy * imunologie MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bangladéš epidemiologie MeSH
- Názvy látek
- hmyzí proteiny * MeSH
- slinné proteiny a peptidy * MeSH
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
Department of Microbiology Mymensingh Medical College Mymensingh 2206 Bangladesh
Department of Parasitology Faculty of Medicine Ege University 35100 Bornova Izmir Turkey
Zobrazit více v PubMed
Abdeladhim M., V. Coutinho-Abreu I., Townsend S., Pasos-Pinto S., Sanchez L., Rasouli M., B. Guimaraes-Costa A., Aslan H., Francischetti I.M.B., Oliveira F., Becker I., Kamhawi S., Ribeiro J.M.C., Jochim R.C., Valenzuela J.G., Ghedin E. Molecular diversity between salivary proteins from New World and Old World sand flies with emphasis on Bichromomyia olmeca, the sand fly vector of Leishmania mexicana in Mesoamerica. PLoS Negl. Trop. Dis. 2016;10:e0004771. doi: 10.1371/journal.pntd.0004771. PubMed DOI PMC
Alvar J., Vélez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., Boer M.D., Kirk M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7:e35671. doi: 10.1371/journal.pone.0035671. PubMed DOI PMC
Anderson J.M., Oliveira F., Kamhawi S., Mans B.J., Reynoso D., Seitz A.E., Lawyer P., Garfield M., Pham M., Valenzuela J.G. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7 doi: 10.1186/1471-2164-7-52. PubMed DOI PMC
Bhattarai N.R., Das M.L., Rijal S., van der Auwera G., Picado A., Khanal B., Roy L., Speybroeck N., Berkvens D., Davies C.R., Coosemans M., Boelaert M., Dujardin J.-C. Natural infection of Phlebotomus argentipes with Leishmania and other trypanosomatids in a visceral leishmaniasis endemic region of Nepal. Trans. R. Soc. Trop. Med. Hyg. 2009;103:1087–1092. doi: 10.1016/j.trstmh.2009.03.008. PubMed DOI
Bláha J., Pachl P., Novák P., Vaněk O. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI− cells. Protein Expr. Purif. 2015;109:7–13. doi: 10.1016/j.pep.2015.01.006. PubMed DOI
Carvalho A.M., Fukutani K.F., Sharma R., Curvelo R.P., Miranda J.C., Barral A., Carvalho E.M., Valenzuela J.G., Oliveira F., De Oliveira C.I. Seroconversion to Lutzomyia intermedia LinB-13 as a biomarker for developing cutaneous leishmaniasis. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-03345-0. PubMed DOI PMC
Chowdhury R., Chowdhury V., Faria S., Akter S., Dash A.P., Bhattacharya S.K., Maheswary N.P., Bern C., Akhter S., Alvar J., Kroeger A., Boelaert M., Banu Q., Oliveira F. Effect of insecticide-treated bed nets on visceral leishmaniasis incidence in Bangladesh. A retrospective cohort analysis. PLoS Negl. Trop. Dis. 2019;13:e0007724. doi: 10.1371/journal.pntd.0007724. PubMed DOI PMC
Chowdhury R., Faria S., Huda M.M., Chowdhury V., Maheswary N.P., Mondal D., Akhter S., Akter S., Khan R.K., Nabi S.G., Kroeger A., Argaw D., Alvar J., Dash A.P., Banu Q., Valenzuela J.G. Control of Phlebotomus argentipes (Diptera: Psychodidae) sand fly in Bangladesh: A cluster randomized controlled trial. PLoS Negl. Trop. Dis. 2017;11:e0005890. doi: 10.1371/journal.pntd.0005890. PubMed DOI PMC
Chowdhury R., Kumar V., Mondal D., Das M.L., Das P., Dash A.P., Kroeger A. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent. Pathog. Glob. Health. 2016;110:87–96. doi: 10.1080/20477724.2016.1180775. PubMed DOI PMC
Chowdhury R., Mondal D., Chowdhury V., Faria S., Alvar J., Nabi S.G., Boelaert M., Dash A.P., Ghedin E. How far are we from visceral leishmaniasis elimination in Bangladesh? An assessment of epidemiological surveillance data. PLoS Negl. Trop. Dis. 2014;8:e3020. doi: 10.1371/journal.pntd.0003020. PubMed DOI PMC
Clements M.F., Gidwani K., Kumar R., Hostomska J., Dinesh D.S., Kumar V., Das P., Müller I., Hamilton G., Volfova V., Boelaert M., Das M., Rijal S., Picado A., Volf P., Sundar S., Davies C.R., Rogers M.E. Measurement of recent exposure to Phlebotomus argentipes, the vector of Indian visceral leishmaniasis, by using human antibody responses to sand fly saliva. Am. J. Trop. Med. Hyg. 2010;82:801–807. doi: 10.4269/ajtmh.2010.09-0336. PubMed DOI PMC
Coutinho-Abreu I.V., Valenzuela J.G. Comparative evolution of sand fly salivary protein families and implications for biomarkers of vector exposure and salivary vaccine candidates. Front. Cell. Infect. Microbiol. 2018;8 doi: 10.3389/fcimb.2018.00290. PubMed DOI PMC
Durocher Y., Perret S., Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30 doi: 10.1093/nar/30.2.e9. PubMed DOI PMC
Elias M., Mizanur Rahman A.J.M., Khan N.I. Visceral leishmaniasis and its control in Bangladesh. Bull. World Health Organ. 1989;67:43–49. PubMed PMC
Ghosh K.N., Mukhopadhyay J. The effect of anti-sandfly saliva antibodies on Phlebotomus argentipes and Leishmania donovani. Int. J. Parasitol. 1998;28:275–281. doi: 10.1016/S0020-7519(97)00152-5. PubMed DOI
Gidwani K., Picado A., Rijal S., Singh S.P., Roy L., Volfova V., Andersen E.W., Uranw S., Ostyn B., Sudarshan M., Chakravarty J., Volf P., Sundar S., Boelaert M., Rogers M.E., Kamhawi S. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: a cluster-randomized trial. PLoS Negl. Trop. Dis. 2011;5:e1296. doi: 10.1371/journal.pntd.0001296. PubMed DOI PMC
Grueninger-Leitch F., D'Arcy A., D'Arcy B., Chène C. Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 1996;5:2617–2622. doi: 10.1002/pro.5560051224. PubMed DOI PMC
Hossain M.I., Khan S.A., Ameen M.-U. Phlebotomine sandflies of Bangladesh: recent surveys. Med. Vet. Entomol. 1993;7:99–101. doi: 10.1111/j.1365-2915.1993.tb00659.x. PubMed DOI
Julenius K., Mølgaard A., Gupta R., Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2004;15:153–164. doi: 10.1093/glycob/cwh151. PubMed DOI
Kammoun-Rebai W., Bahi-Jaber N., Naouar I., Toumi A., Ben Salah A., Louzir H., Meddeb-Garnaoui A., Olivier M. Human cellular and humoral immune responses to Phlebotomus papatasi salivary gland antigens in endemic areas differing in prevalence of Leishmania major infection. PLoS Negl. Trop. Dis. 2017;11:e0005905. doi: 10.1371/journal.pntd.0005905. PubMed DOI PMC
Kostalova T., Lestinova T., Maia C., Sumova P., Vlkova M., Willen L., Polanska N., Fiorentino E., Scalone A., Oliva G., Veronesi F., Cristóvão J.M., Courtenay O., Campino L., Gradoni L., Gramiccia M., Volf P. The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med. Vet. Entomol. 2017;31:88–93. doi: 10.1111/mve.12192. PubMed DOI
Kostalova T., Lestinova T., Sumova P., Vlkova M., Rohousova I., Berriatua E., Oliva G., Fiorentino E., Scalone A., Gramiccia M., Gradoni L., Volf P., Debrabant A. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl. Trop. Dis. 2015;9:e0003855. doi: 10.1371/journal.pntd.0003855. PubMed DOI PMC
Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC
Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P., Milon G. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
LEWIS D.J. Phlebotomine sandflies (Diptera: Psychodidae) from the Oriental Region. Syst. Entomol. 1987;12:163–180. doi: 10.1111/j.1365-3113.1987.tb00194.x. DOI
Lewis D.J. A taxonomic review of the genus Phlebotomus (Diptera : Psychodidae) Bull. Br. Museum Nat. Hist. Entomol. 1982;45:121–209.
Maia C., Cristóvão J., Pereira A., Kostalova T., Lestinova T., Sumova P., Volf P., Campino L. Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasites Vectors. 2020;13:1–12. doi: 10.1186/s13071-020-3993-7. PubMed DOI PMC
Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Martín-Martín I., Molina R., Jiménez M. An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop. 2012;123:22–30. doi: 10.1016/j.actatropica.2012.03.003. PubMed DOI
Martín-Martín I., Molina R., Jiménez M. Identifying salivary antigens of Phlebotomus argentipes by a 2DE approach. Acta Trop. 2013;126:229–239. doi: 10.1016/j.actatropica.2013.02.008. PubMed DOI
Martín-Martín I., Molina R., Rohoušová I., Drahota J., Volf P., Jiménez M. High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet. Parasitol. 2014;202:207–216. doi: 10.1016/j.vetpar.2014.02.045. PubMed DOI
Marzouki S., Abdeladhim M., Abdessalem C.B., Oliveira F., Ferjani B., Gilmore D., Louzir H., Valenzuela J.G., Ahmed M.B., Bates P.A. Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans. PLoS Negl. Trop. Dis. 2012;6:e1911. doi: 10.1371/journal.pntd.0001911. PubMed DOI PMC
Marzouki S., Kammoun-Rebai W., Bettaieb J., Abdeladhim M., Hadj Kacem S., Abdelkader R., Gritli S., Chemkhi J., Aslan H., Kamhawi S., Ben Salah A., Louzir H., Valenzuela J.G., Ben Ahmed M., Bates P.A. Validation of recombinant salivary protein PpSP32 as a suitable marker of human exposure to Phlebotomus papatasi, the vector of Leishmania major in Tunisia. PLoS Negl. Trop. Dis. 2015;9:e0003991. doi: 10.1371/journal.pntd.0003991. PubMed DOI PMC
Mondal D., Das M.L., Kumar V., Huda M.M., Das P., Ghosh D., Priyanka J., Matlashewski G., Kroeger A., Upfill-Brown A., Chowdhury R., Acosta-Serrano A. Efficacy, safety and cost of insecticide treated wall lining, insecticide treated bed nets and indoor wall wash with lime for visceral leishmaniasis vector control in the Indian sub-continent: a multi-country cluster randomized controlled trial. PLoS Negl. Trop. Dis. 2016;10:e0004932. doi: 10.1371/journal.pntd.0004932. PubMed DOI PMC
Mondragon-Shem K., Al-Salem W.S., Kelly-Hope L., Abdeladhim M., Al-Zahrani M.H., Valenzuela J.G., Acosta-Serrano A. Severity of Old World cutaneous leishmaniasis is influenced by previous exposure to sandfly bites in Saudi Arabia. PLoS Negl. Trop. Dis. 2015;9:1–14. doi: 10.1371/journal.pntd.0003449. PubMed DOI PMC
Özbel, Y., Sanjoba, C., Matsumoto, Y., 2017. Geographical distribution and ecological aspect of sand fly species in Bangladesh, in: Noiri, E., Jha, T. (Eds.), Kala Azar in South Asia. Springer International Publishing, Cham, pp. 199–209. 10.1007/978-3-319-47101-3_17.
Polanska N., Ishemgulova A., Volfova V., Flegontov P., Votypka J., Yurchenko V., Volf P. Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources. PLoS One. 2020;15:1–40. doi: 10.1371/journal.pone.0230537. PubMed DOI PMC
Risueño J., Spitzová T., Bernal L.J., Muñoz C., López M.C., Thomas M.C., Infante J.J., Volf P., Berriatua E. Longitudinal monitoring of anti-saliva antibodies as markers of repellent efficacy against Phlebotomus perniciosus and Phlebotomus papatasi in dogs. Med. Vet. Entomol. 2018;33:99–109. doi: 10.1111/mve.12343. PubMed DOI
Rohousova I., Ozensoy S., Ozbel Y., Volf P. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology. 2005;130:493–499. doi: 10.1017/S003118200400681X. PubMed DOI
Rohousova I., Talmi-Frank D., Vlkova M., Spitzova T., Rishpon K., Jaffe C.L., Volf P., Baneth G., Ephros M. Serological evaluation of cutaneous leishmania tropica infection in Northern Israel. Am. J. Trop. Med. Hyg. 2018;98:139–141. doi: 10.4269/ajtmh.17-0370. PubMed DOI PMC
Souza A.P., Andrade B.B., Aquino D., Entringer P., Miranda J.C., Alcantara R., Ruiz D., Soto M., Teixeira C.R., Valenzuela J.G., de Oliveira C.I., Brodskyn C.I., Barral-Netto M., Barral A., Milon G. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl. Trop. Dis. 2010;4:e649. doi: 10.1371/journal.pntd.0000649. PubMed DOI PMC
Spitzova T., Sumova P., Volfova V., Polanska N., Poctova L., Volf P. Interactions between host biogenic amines and sand fly salivary yellow-related proteins. Parasit. Vectors. 2020;13:237. doi: 10.1186/s13071-020-04105-2. PubMed DOI PMC
Sumova P., Sima M., Spitzova T., Osman M.E., Guimaraes-Costa A.B., Oliveira F., Elnaiem D.-E., Hailu A., Warburg A., Valenzuela J.G., Volf P., Dutra W.O. Human antibody reaction against recombinant salivary proteins of Phlebotomus orientalis in Eastern Africa. PLoS Negl. Trop. Dis. 2018;12:e0006981. doi: 10.1371/journal.pntd.0006981. PubMed DOI PMC
Teixeira C., Gomes R., Collin N., Reynoso D., Jochim R., Oliveira F., Seitz A., Elnaiem D.-E., Caldas A., de Souza A.P., Brodskyn C.I., de Oliveira C.I., Mendonca I., Costa C.H.N., Volf P., Barral A., Kamhawi S., Valenzuela J.G., Milon G. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl. Trop. Dis. 2010;4:e638. doi: 10.1371/journal.pntd.0000638. PubMed DOI PMC
Thiakaki M., Rohousova I., Volfova V., Volf P., Chang K.-P., Soteriadou K. Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. Microbes Infect. 2005;7:760–766. doi: 10.1016/j.micinf.2005.01.013. PubMed DOI
Valenzuela J.G., Belkaid Y., Garfield M.K., Mendez S., Kamhawi S., Rowton E.D., Sacks D.L., Ribeiro J.M. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med. 2001;194:331–342. doi: 10.1084/jem.194.3.331. PubMed DOI PMC
Vlkova M., Sima M., Rohousova I., Kostalova T., Sumova P., Volfova V., Jaske E.L., Barbian K.D., Gebre-Michael T., Hailu A., Warburg A., Ribeiro J.M.C., Valenzuela J.G., Jochim R.C., Volf P., McDowell M.A. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl. Trop. Dis. 2014;8:e2709. doi: 10.1371/journal.pntd.0002709. PubMed DOI PMC
Volf P., Rohoušová I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001;122:37–41. doi: 10.1017/S0031182000007046. PubMed DOI
Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Willen L., Lestinova T., Kalousková B., Sumova P., Spitzova T., Velez R., Domenech E., Vaněk O., Gállego M., Mertens P., Volf P., Fujiwara R.T. Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis. PLoS Negl. Trop. Dis. 2019;13:e0007832. doi: 10.1371/journal.pntd.0007832. PubMed DOI PMC