Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GHTM-UID/Multi/04413/2013
Fundação para a Ciência e a Tecnologia
Investigator Starting Grant IF/01302/2015
Fundação para a Ciência e a Tecnologia
SFRH/BD/116516/2016
Fundação para a Ciência e a Tecnologia
project CeRaViP (16_019/0000759)
H2020 European Research Council
UNCE 204072
H2020 European Research Council
PubMed
32312325
PubMed Central
PMC7171869
DOI
10.1186/s13071-020-3993-7
PII: 10.1186/s13071-020-3993-7
Knihovny.cz E-zdroje
- Klíčová slova
- Blood, Conjunctival cells, Dog, Exposure, L. infantum, Phlebotomus pernicious, Saliva,
- MeSH
- antigeny protozoální imunologie MeSH
- endemické nemoci prevence a kontrola MeSH
- hmyz - vektory parazitologie MeSH
- hmyzí proteiny imunologie MeSH
- imunoglobulin G krev MeSH
- konjunktiva cytologie parazitologie MeSH
- kousnutí a bodnutí hmyzem MeSH
- Leishmania infantum izolace a purifikace MeSH
- leishmanióza krev imunologie veterinární MeSH
- nemoci psů parazitologie prevence a kontrola přenos MeSH
- Phlebotomus parazitologie MeSH
- protilátky protozoální krev MeSH
- protozoální proteiny imunologie MeSH
- psi MeSH
- rizikové faktory MeSH
- sérologické testy MeSH
- slinné proteiny a peptidy imunologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny protozoální MeSH
- hmyzí proteiny MeSH
- imunoglobulin G MeSH
- protilátky protozoální MeSH
- protozoální proteiny MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: In endemic areas of zoonotic leishmaniosis caused by L. infantum, early detection of Leishmania infection in dogs is essential to control the dissemination of the parasite to humans. The aim of this study was to evaluate the serological and/or molecular diagnostic performance of minimally and non-invasive samples (conjunctiva cells (CS) and peripheral blood (PB)) for monitoring Leishmania infection/exposure to Phlebotomus perniciosus salivary antigens in dogs at the beginning and the end of sand fly seasonal activity (May and October, respectively) and to assess associated risks factors. METHODS: A total of 208 sheltered dogs from endemic areas of leishmaniosis were screened. Leishmania DNA detection in PB on filter paper and CS was performed by nested-PCR (nPCR), while the detection of anti-Leishmania antibodies was performed using IFAT and ELISA. The exposure to P. perniciosus salivary antigens (SGH, rSP01 and rSP03B + rSP01) was measured by ELISA. RESULTS: Ninety-seven (46.6%) and 116 (55.8%) of the 208 dogs were positive to Leishmania antibodies or DNA by at least one test at the beginning and end of the sand fly season, respectively. IFAT and ELISA presented a substantial agreement in the serodiagnosis of leishmaniosis. Discrepant PB nPCR results were obtained between sampling points. Leishmania DNA was detected in CS of 72 dogs at the end of the phlebotomine season. The presence of antibodies to the parasite measured by ELISA was significantly higher in dogs presenting clinical signs compatible with leishmaniosis at both sampling points. Phlebotomus perniciosus salivary antibodies were detected in 179 (86.1%) and 198 (95.2%) of the screened dogs at the beginning and end of the phlebotomine season, respectively. CONCLUSIONS: The association between ELISA positivity and clinical signs suggests its usefulness to confirm a clinical suspicion. CS nPCR seems to be an effective and non-invasive method for assessing early exposure to the parasite. PB nPCR should not be used as the sole diagnostic tool to monitor Leishmania infection. The correlation between the levels of antibodies to P. perniciosus saliva and Leishmania antibodies suggests the use of a humoral response to sand fly salivary antigens as biomarkers of L. infantum infection.
Department of Parasitology Faculty of Science Charles University Prague Prague Czech Republic
Zobrazit více v PubMed
WHO . Control of the leishmaniases: report of a meeting of the WHO expert commitee on the control of leishmaniases, Geneva, 22–26 March 2010. Geneva: World Health Organization; 2010.
Alten B, Maia C, Afonso MO, Campino L, Jiménez M, González E, et al. Seasonal dynamics of phlebotomine sand fly species proven vectors of mediterranean leishmaniasis caused by Leishmania infantum. PLoS Negl Trop Dis. 2016;10:e0004458. doi: 10.1371/journal.pntd.0004458. PubMed DOI PMC
Dvorak V, Shaw J, Volf P. Parasite biology: the vectors. In: Bruschi F, Gradoni L, editors. The Lleishmaniases: old neglected and tropical diseases. Austria: Springer; 2018. pp. 31–77.
Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part one. Trends Parasitol. 2008;24:324–330. doi: 10.1016/j.pt.2008.04.001. PubMed DOI
Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–1934. doi: 10.1017/S0031182009991156. PubMed DOI
Solano-Gallego L, Cardoso L, Pennisi MG, Petersen C, Bourdeau P, Oliva G, et al. Diagnostic challenges in the era of canine Leishmania infantum vaccines. Trends Parasitol. 2017;33:706–717. doi: 10.1016/j.pt.2017.06.004. PubMed DOI
Maia C, Campino L. Biomarkers associated with Leishmania infantum exposure, infection, and disease in dogs. Front Cell Infect Microbiol. 2018;8:302. doi: 10.3389/fcimb.2018.00302. PubMed DOI PMC
Paltrinieri S, Gradoni L, Roura X, Zatelli A, Zini E. Laboratory tests for diagnosing and monitoring canine leishmaniasis. Vet Clin Pathol. 2016;45:552–578. doi: 10.1111/vcp.12413. PubMed DOI
Maia C, Campino L. Methods for diagnosis of canine leishmaniasis and immune response to infection. Vet Parasitol. 2008;158:274–287. doi: 10.1016/j.vetpar.2008.07.028. PubMed DOI
Gramiccia M, Di Muccio T, Fiorentino E, Scalone A, Bongiorno G, Cappiello S, et al. Longitudinal study on the detection of canine Leishmania infections by conjunctival swab analysis and correlation with entomological parameters. Vet Parasitol. 2010;171:223–228. doi: 10.1016/j.vetpar.2010.03.025. PubMed DOI
Di Muccio T, Veronesi F, Antognoni MT, Onofri A, Piergili Fioretti D, Gramiccia M. Diagnostic value of conjunctival swab sampling associated with nested PCR for different categories of dogs naturally exposed to Leishmania infantum infection. J Clin Microbiol. 2012;50:2651–2659. doi: 10.1128/JCM.00558-12. PubMed DOI PMC
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
Drahota J, Martin-Martin I, Sumova P, Rohousova I, Jimenez M, Molina R, et al. Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases vector. PLoS Negl Trop Dis. 2014;8:e2597. doi: 10.1371/journal.pntd.0002597. PubMed DOI PMC
Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: a longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9:e0003855. doi: 10.1371/journal.pntd.0003855. PubMed DOI PMC
Kostalova T, Lestinova T, Maia C, Sumova P, Vlkova M, Willen L, et al. The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med Vet Entomol. 2017;31:88–93. doi: 10.1111/mve.12192. PubMed DOI
Velez R, Spitzova T, Domenech E, Willen L, Cairó J, Volf P, et al. Seasonal dynamics of canine antibody response to Phlebotomus perniciosus saliva in an endemic area of Leishmania infantum. Parasites Vectors. 2018;11:545. doi: 10.1186/s13071-018-3123-y. PubMed DOI PMC
Martín-Martín I, Molina R, Rohoušová I, Drahota J, Volf P, Jiménez M. High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet Parasitol. 2014;202:207–216. doi: 10.1016/j.vetpar.2014.02.045. PubMed DOI
Pires CA. Phlebotomus of Portugal. I—Natural infestation of Phlebotomus ariasi Tonnoir, 1921 and Phlebotomus perniciosus Newstead, 1911, by Leishmania in the zoonotic focus of Arrábida (Portugal) Ann Parasitol Hum Comp. 1984;59:521–524. doi: 10.1051/parasite/1984595521. PubMed DOI
Cortes S, Afonso MO, Alves-Pires C, Campino L. Stray dogs and leishmaniasis in urban areas, Portugal. Emerg Infect Dis. 2007;13:1431–1432. doi: 10.3201/eid1309.070101. PubMed DOI PMC
Paltrinieri S, Solano-Gallego L, Fondati A, Lubas G, Gradoni L, Castagnaro M, et al. Guidelines for diagnosis and clinical classification of leishmaniasis in dogs. J Am Vet Med Assoc. 2010;236:1184–1191. doi: 10.2460/javma.236.11.1184. PubMed DOI
Maia C, Coimbra M, Ramos C, Cristóvão J, Cardoso L, Campino L. Serological investigation of Leishmania infantum, Dirofilaria immitis and Angiostrongylus vasorum in dogs from southern Portugal. Parasites Vectors. 2015;8:152. doi: 10.1186/s13071-015-0771-z. PubMed DOI PMC
Maia C, Alwassouf S, Cristóvão JM, Ayhan N, Pereira A, Charrel RN, et al. Serological association between Leishmania infantum and sand fly fever Sicilian (but not Toscana) virus in sheltered dogs from southern Portugal. Parasites Vectors. 2017;10:92. doi: 10.1186/s13071-017-2023-x. PubMed DOI PMC
Alwassouf S, Maia C, Ayhan N, Coimbra M, Cristovao JM, Richet H, et al. Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs and cats from Portugal. J Gen Virol. 2016;97:2816–2823. doi: 10.1099/jgv.0.000592. PubMed DOI
Maia C, Almeida B, Coimbra M, Fernandes M, Cristóvão J, Ramos C, et al. Bacterial and protozoal agents of canine vector-borne diseases in the blood of domestic and stray dogs from southern Portugal. Parasites Vectors. 2015;8:138. doi: 10.1186/s13071-015-0759-8. PubMed DOI PMC
Cruz I, Cañavate C, Rubio JM, Morales MA, Chicharro C, Laguna F, et al. A nested polymerase chain reaction (Ln-PCR) for diagnosing and monitoring Leishmania infantum infection in patients co-infected with human immunodeficiency virus. Trans R Soc Trop Med Hyg. 2002;96(Suppl. 1):S185–S189. doi: 10.1016/S0035-9203(02)90074-X. PubMed DOI
Maia C, Nunes M, Cristóvão J, Campino L. Experimental canine leishmaniasis: clinical, parasitological and serological follow-up. Acta Trop. 2010;116:193–199. doi: 10.1016/j.actatropica.2010.08.001. PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Sergeant E, Perkins N. Epidemiology for field veterinarians: an introduction. Wallingford: CAB International; 2015.
Schober P, Boer C, Schwarte LA. Correlation coefficients. Anesth Analg. 2018;126:1763–1768. doi: 10.1213/ANE.0000000000002864. PubMed DOI
Miró G, Cardoso L, Pennisi MG, Oliva G, Baneth G. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part two. Trends Parasitol. 2008;24:371–377. doi: 10.1016/j.pt.2008.05.003. PubMed DOI
Solano-Gallego L, Koutinas A, Miró G, Cardoso L, Pennisi MG, Ferrer L, et al. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet Parasitol. 2009;165:1–18. doi: 10.1016/j.vetpar.2009.05.022. PubMed DOI
Foglia Manzillo V, Di Muccio T, Cappiello S, Scalone A, Paparcone R, Fiorentino E, et al. Prospective study on the incidence and progression of clinical signs in naïve dogs naturally infected by Leishmania infantum. PLoS Negl Trop Dis. 2013;7:e2225. doi: 10.1371/journal.pntd.0002225. PubMed DOI PMC
Iniesta L, Fernández-Barredo S, Bulle B, Gómez MT, Piarroux R, Gállego M, et al. Diagnostic techniques to detect cryptic leishmaniasis in dogs. Clin Diagn Lab Immunol. 2002;9:1137–1141. PubMed PMC
Otranto D, Paradies P, de Caprariis D, Stanneck D, Testini G, Grimm F, et al. Toward diagnosing Leishmania infantum infection in asymptomatic dogs in an area where leishmaniasis is endemic. Clin Vaccine Immunol. 2009;16:337–343. doi: 10.1128/CVI.00268-08. PubMed DOI PMC
Oliva G, Scalone A, Foglia Manzillo V, Gramiccia M, Pagano A, Di Muccio T, et al. Incidence and time course of Leishmania infantum infections examined by parasitological, serologic, and nested-PCR techniques in a cohort of naive dogs exposed to three consecutive transmission seasons. J Clin Microbiol. 2006;44:1318–1322. doi: 10.1128/JCM.44.4.1318-1322.2006. PubMed DOI PMC
Paradies P, Sasanelli M, de Caprariis D, Testini G, Traversa D, Lia RP, et al. Clinical and laboratory monitoring of dogs naturally infected by Leishmania infantum. Vet J. 2010;186:370–373. doi: 10.1016/j.tvjl.2009.09.011. PubMed DOI
Campino L, Maia C. The role of reservoirs: canine leishmaniasis. In: Ponte-Sucre A, Diaz E, Padron-Nieves M, editors. Drug resistance in Leishmania parasites. Consequences, molecular mechanisms and possible treatments. 2. Viena: Springer; 2018. pp. 59–83.
Cortes S, Vaz Y, Neves R, Maia C, Cardoso L, Campino L. Risk factors for canine leishmaniasis in an endemic Mediterranean region. Vet Parasitol. 2012;189:189–196. doi: 10.1016/j.vetpar.2012.04.028. PubMed DOI
Brianti E, Gaglio G, Napoli E, Falsone L, Prudente C, Solari Basano F, et al. Efficacy of a slow-release imidacloprid (10%)/flumethrin (4.5%) collar for the prevention of canine leishmaniosis. Parasites Vectors. 2014;7:327. doi: 10.1186/1756-3305-7-327. PubMed DOI PMC
Strauss-Ayali D, Jaffe CL, Burshtain O, Gonen L, Baneth G. Polymerase chain reaction using noninvasively obtained samples, for the detection of Leishmania infantum DNA in dogs. J Infect Dis. 2004;189:1729–1733. doi: 10.1086/383281. PubMed DOI
Karakuş M, Töz S, Ertabaklar H, Paşa S, Atasoy A, Arserim SK, et al. Evaluation of conjunctival swab sampling in the diagnosis of canine leishmaniasis: a two-year follow-up study in Çukurova Plain, Turkey. Vet Parasitol. 2015;214:295–302. doi: 10.1016/j.vetpar.2015.09.009. PubMed DOI
Gaglio G, Napoli E, Arfuso F, Abbate JM, Giannetto S, Brianti E. Do different LED colours influence sand fly collection by light trap in the Mediterranean? Biomed Res Int. 2018;2018:6432637. doi: 10.1155/2018/6432637. PubMed DOI PMC
Vlkova M, Rohousova I, Drahota J, Stanneck D, Kruedewagen EM, Mencke N, et al. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5:e1344. doi: 10.1371/journal.pntd.0001344. PubMed DOI PMC
Pereira A, Cristóvão JM, Vilhena H, Martins Â, Cachola P, Henriques J, et al. Antibody response to Phlebotomus perniciosus saliva in cats naturally exposed to phlebotomine sand flies is positively associated with Leishmania infection. Parasites Vectors. 2019;12:128. doi: 10.1186/s13071-019-3376-0. PubMed DOI PMC
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, et al. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4:e649. doi: 10.1371/journal.pntd.0000649. PubMed DOI PMC
Quinnell RJ, Soremekun S, Bates PA, Rogers ME, Garcez LM, Courtenay O. Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum. Parasites Vectors. 2018;11(1):7. doi: 10.1186/s13071-017-2587-5. PubMed DOI PMC