OBJECTIVES: Former studies demonstrated quick selection of paromomycin resistance for Leishmania infantum and Leishmania donovani accompanied by increased fitness. The present study aimed to interpret these findings in an epidemiological context by comparing infection of WT and experimentally derived paromomycin-resistant strains in the sand fly vector. METHODS: Depending on the Leishmania species, Lutzomyia longipalpis and Phlebotomus perniciosus or Phlebotomus argentipes sand flies were artificially infected with procyclic promastigotes of WT and paromomycin-resistant L. infantum (MHOM/FR/96/LEM3323-cl4) or L. donovani (MHOM/NP/03/BPK275/0-cl18). The infection rate and gut/stomodeal valve colonization were determined to monitor parasite phenotypic behaviour within the vector. The impact of the previously described gain of fitness in the vertebrate host on infectivity for the vector was assessed by feeding L. longipalpis on Syrian golden hamsters heavily infected with either WT or paromomycin-resistant parasites. RESULTS: WT and paromomycin-resistant Leishmania of both species behaved similarly in terms of infection and parasite location within the studied sand fly species. Blood feeding on infected hamsters did not reveal differences in acquisition of WT and paromomycin-resistant parasites, despite the higher organ burdens observed for the paromomycin-resistant strain. Strains remained resistant after passage in the vector. CONCLUSIONS: Although paromomycin-resistant parasites show an increased parasite fitness in vitro and in laboratory rodents, the intrinsic infection potential of paromomycin-resistant parasites remains unaltered in the sand fly. Of importance is the fact that paromomycin-resistant Leishmania are able to complete development in the natural vectors and produce stomodeal infection with metacyclic forms, which clearly suggests their potential to spread and circulate in nature.
- MeSH
- Cricetinae MeSH
- Leishmania donovani * MeSH
- Leishmania infantum * MeSH
- Paromomycin pharmacology MeSH
- Phlebotomus * MeSH
- Psychodidae * MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Flavonolignans from the seeds of the milk thistle (Silybum marianum) have been extensively used in folk medicine for centuries. Confirmation of their properties as hepatoprotective, antioxidant and anticancer has been obtained using standardized extracts and purified flavonolignans. Information on their potential effect on Leishmania is very scarce. We have investigated the effect of silymarin, silybin and related flavonolignans on the multiplication of promastigotes in vitro and ex vivo on intracellular amastigotes of L. infantum (Li) and L. donovani (Ld), causative agents of human and canine visceral leishmaniasis (VL). In addition, the potential synergistic effect of the most active molecule and well-established antileishmanial drugs against promastigotes was explored. Dehydroisosilybin A elicited the highest inhibition against Ld and Li promastigotes with an approximate IC50 of 90.23 µM. This molecule showed a moderate synergism with amphotericin B (AmB) but not with SbIII or paromomycin, although it was ineffective against amastigotes. Antileishmanial activity on intracellular amastigotes of the two diastereoisomers of dehydrosilybin (10 µM) was comparable to that elicited by 0.1 µM AmB. Antiproliferative activity and safety of flavonolignans suggest the interest of exploring their potential value in combination therapy against VL.
- MeSH
- Amphotericin B pharmacology MeSH
- Antiprotozoal Agents pharmacology MeSH
- Leishmania donovani drug effects MeSH
- Leishmania infantum drug effects MeSH
- Leishmaniasis, Visceral metabolism MeSH
- Humans MeSH
- Dogs MeSH
- Silybin MeSH
- Silymarin pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Leishmania infantum is the most widespread etiological agent of visceral leishmaniasis (VL) in the world, with significant mortality rates in human cases. In Latin America, this parasite is primarily transmitted by Lutzomyia longipalpis, but the role of Lutzomyia migonei as a potential vector for this protozoan has been discussed. Laboratory and field investigations have contributed to this hypothesis; however, proof of the vector competence of L. migonei has not yet been provided. In this study, we evaluate for the first time the susceptibility of L. migonei to L. infantum. METHODS: Females of laboratory-reared L. migonei were fed through a chick-skin membrane on rabbit blood containing L. infantum promastigotes, dissected at 1, 5 and 8 days post-infection (PI) and checked microscopically for the presence, intensity and localisation of Leishmania infections. In addition, morphometric analysis of L. infantum promastigotes was performed. RESULTS: High infection rates of both L. infantum strains tested were observed in L. migonei, with colonisation of the stomodeal valve already on day 5 PI. At the late-stage infection, most L. migonei females had their cardia and stomodeal valve colonised by high numbers of parasites, and no significant differences were found compared to the development in L. longipalpis. Metacyclic forms were found in all parasite-vector combinations since day 5 PI. CONCLUSIONS: We propose that Lutzomyia migonei belongs to sand fly species permissive to various Leishmania spp. Here we demonstrate that L. migonei is highly susceptible to the development of L. infantum. This, together with its known anthropophily, abundance in VL foci and natural infection by L. infantum, constitute important evidence that L. migonei is another vector of this parasite in Latin America.
Development of Leishmania infantum/Leishmania major hybrids was studied in two sand fly species. In Phlebotomus papatasi, which supported development of L. major but not L. infantum, the hybrids produced heavy late-stage infections with high numbers of metacyclic promastigotes. In the permissive vector Lutzomyia longipalpis, all Leishmania strains included in this study developed well. Hybrids were found to express L. major lipophosphoglycan, apparently enabling them to survive in P. papatasi midgut. The genetic exchange of the hybrids thus appeared to have enhanced their transmission potential and fitness. A potentially serious consequence is the future spread of the hybrids using this peridomestic and antropophilic vector.
BACKGROUND: Infection caused by parasites from L. donovani complex can manifest as a serious visceral disease or a self-healing milder cutaneous form. The different tropism and pathology in humans is caused by the interaction between parasites, host and vector determinants but the mechanisms are not well understood. In Cukurova region in Turkey we previously identified a major focus of cutaneous leishmaniasis caused by L. donovani/infantum hybrids (CUK strain) and isolated this parasite from the locally abundant sand fly, Phlebotomus tobbi. Here, we present the first experimental study with P. tobbi. We tested the susceptibility of this species to various Leishmania under laboratory conditions, characterized glycoproteins in the P. tobbi midgut putatively involved in parasite-vector interaction and compared the development of the CUK strain in the sand fly with one other dermotropic and three viscerotropic strains belonging to the L. donovani complex. METHODS: Females of laboratory reared P. tobbi, P. perniciosus and Lutzomyia longipalpis were infected using membrane feeding on rabbit blood containing promastigotes of various Leishmania species with different tropisms. The individual guts were checked microscopically for presence and localization of Leishmania parasites; the number of parasites was assessed more precisely by qPCR. In addition, glycosylation of midgut proteins of P. tobbi was studied by lectin blotting of midgut lysate with lectins specific for terminal sugars of N-type and O-type glycans. RESULTS: High infection rates, heavy parasite loads and late-stage infection with colonization of the stomodeal valve were observed in P. tobbi infected by Leishmania major or L. infantum CUK hybrid. In parallel, lectin blotting revealed the presence of O-glycosylated proteins in the P. tobbi midgut. In P. perniciosus and L. longipalpis all five Leishmania strains tested developed well. In both vectors, significantly higher parasite numbers were detected by qPCR for dermotropic L. donovani from Cyprus, however, in all other parameters studied, including localization of infection and colonization of stomodeal valve, dermotropic and viscerotropic strains were not significantly different. CONCLUSIONS: We showed high susceptibility of P. tobbi to various Leishmania spp. This, together with the presence of O-glycosylated midgut proteins in their midguts demonstrate that P. tobbi is a permissive vector. Two dermotropic and three viscerotropic strains from the L. donovani complex developed late-stage infections in natural L. infantum vectors, P. perniciosus and L. longipalpis and none of the parameters studied seem to be linked with different tropism of parasites in the vertebrate host.
- MeSH
- Gastrointestinal Tract parasitology MeSH
- Insect Vectors parasitology MeSH
- Rabbits MeSH
- Leishmania infantum genetics growth & development isolation & purification MeSH
- Leishmania major genetics growth & development isolation & purification MeSH
- Leishmaniasis, Cutaneous epidemiology parasitology MeSH
- Humans MeSH
- Phlebotomus parasitology MeSH
- Psychodidae parasitology MeSH
- Tropism MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Geographicals
- Turkey MeSH
We have developed a PCR assay that in a single reaction distinguishes between Leishmania infantum and Leishmania donovani strains on the basis of different size of the amplicon. The targeted intergenic region between putative biopterin transporter and nucleotide binding protein on chromosome 35 is highly variable, species-specific and can be amplified from clinical samples. Based on the assay, five tested Leishmania archibaldi and L. infantum strains from the Sudan and Ethiopia clearly belong to L. donovani, which is in accordance with a recent multifactorial analysis of these strains. The nucleotide sequence reported in this paper has been submitted to the GenBankTM with accession number EU068004.
Leishmaniases are neglected tropical diseases and Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis are the most important causative agents of leishmaniases in the New World. These two parasite species may co-circulate in a given endemic area but their interactions in the vector have not been studied yet. We conducted experimental infections using both single infections and co-infections to compare the development of L. (L.) infantum (OGVL/mCherry) and L. (V.) braziliensis (XB29/GFP) in Lutzomyia longipalpis and Lutzomyia migonei. Parasite labelling by different fluorescein proteins enabled studying interspecific competition and localization of different parasite species during co-infections. Both Leishmania species completed their life cycle, producing infective forms in both sand fly species studied. The same happens in the co infections, demonstrating that the two parasites conclude their development and do not compete with each other. However, infections produced by L. (L.) infantum reached higher rates and grew more vigorously, as compared to L. (V.) braziliensis. In late-stage infections, L. (L.) infantum was present in all midgut regions, showing typical suprapylarian type of development, whereas L. (V.) braziliensis was concentrated in the hindgut and the abdominal midgut (peripylarian development). We concluded that both Lu. migonei and Lu. longipalpis are equally susceptible vectors for L. (L.) infantum, in laboratory colonies. In relation to L. (V.) braziliensis, Lu. migonei appears to be more susceptible to this parasite than Lu. longipalpis.
- MeSH
- Insect Vectors parasitology MeSH
- Leishmania braziliensis growth & development physiology MeSH
- Leishmania infantum growth & development physiology MeSH
- Psychodidae parasitology MeSH
- Life Cycle Stages MeSH
- Digestive System parasitology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011-2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. METHODS/PRINCIPAL FINDINGS: A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel finding for a L. infantum vector. Adults ended the activity starting from mid September through November, without significant correlation with latitude/mean annual temperature of sites. The period of potential exposure to L.infantum in the Mediterranean subregion, as inferred by adult densities calculated from 3 years, 37 sites and 6 competent vector species, was associated to a regular bell-shaped density curve having a wide peak center encompassing the July-September period, and falling between early May to late October for more than 99% of values. Apparently no risk for leishmaniasis transmission took place from December through March in the years considered. We found a common pattern of nocturnal females activity, whose density peaked between 11 pm and 2 am. CONCLUSIONS: Despite annual variations, multiple collections performed over consecutive years provided homogeneous patterns of the potential behavior of leishmaniasis vectors in selected sites, which we propose may represent sentinel areas for future monitoring. In the investigated years, higher potential risk for L. infantum transmission in the Mediterranean was identified in the June-October period (97% relative vector density), however such risk was not equally distributed throughout the region, since density waves of adults occurred earlier and were more frequent in southern territories.
- MeSH
- Insect Vectors parasitology physiology MeSH
- Leishmania infantum physiology MeSH
- Leishmaniasis epidemiology parasitology transmission MeSH
- Humans MeSH
- Climate MeSH
- Population Dynamics MeSH
- Psychodidae parasitology physiology MeSH
- Seasons MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Mediterranean Region MeSH
BACKGROUND: Canine leishmaniosis (CanL) is an important zoonotic parasitic disease, endemic in the Mediterranean basin. In this region, transmission of Leishmania infantum, the etiological agent of CanL, is through the bite of phlebotomine sand flies. Therefore, monitoring host-vector contact represents an important epidemiological tool, and could be used to assess the effectiveness of vector-control programmes in endemic areas. Previous studies have shown that canine antibodies against the saliva of phlebotomine sand flies are specific markers of exposure to Leishmania vectors. However, this method needs to be further validated in natural heterogeneous dog populations living in CanL endemic areas. METHODS: In this study, 176 dogs living in 12 different locations of an L. infantum endemic area in north-east Spain were followed for 14 months. Blood samples were taken at 5 pre-determined time points (February, August and October 2016; January and April 2017) to assess the canine humoral immune response to whole salivary gland homogenate (SGH) and to the single salivary 43 kDa yellow-related recombinant protein (rSP03B) of Phlebotomus perniciosus, a proven vector of L. infantum naturally present in this region. Simultaneously, in all dogs, L. infantum infection status was assessed by serology. The relationship between anti-SGH and anti-rSP03B antibodies with the sampling month, L. infantum infection and the location was tested by fitting multilevel linear regression models. RESULTS: The dynamics of canine anti-saliva IgG for both SGH and rSP03B followed the expected trends of P. perniciosus activity in the region. Statistically significant associations were detected for both salivary antigens between vector exposure and sampling month or dog seropositivity to L. infantum. The correlation between canine antibodies against SGH and rSP03B was moderate. CONCLUSIONS: Our results confirm the frequent presence of CanL vectors in the study area in Spain and support the applicability of SGH- and rSP03B-based ELISA tests to study canine exposure to P. perniciosus in L. infantum endemic areas.
- MeSH
- Endemic Diseases veterinary MeSH
- Insect Vectors parasitology MeSH
- Immunity, Humoral MeSH
- Immunoglobulin G analysis MeSH
- Leishmania infantum isolation & purification MeSH
- Leishmaniasis blood parasitology veterinary MeSH
- Longitudinal Studies MeSH
- Dog Diseases diagnosis immunology parasitology MeSH
- Phlebotomus immunology MeSH
- Antibodies, Protozoan blood MeSH
- Antibodies blood MeSH
- Dogs immunology parasitology MeSH
- Seasons MeSH
- Salivary Proteins and Peptides immunology MeSH
- Salivary Glands chemistry parasitology MeSH
- Saliva immunology microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Dogs immunology parasitology MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Spain MeSH