Species-specific traits affect bird species' susceptibility to global change

. 2023 Nov 14 ; 110 (6) : 54. [epub] 20231114

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37957333

Grantová podpora
20-00648S Grantová Agentura České Republiky
UNCE/SCI/005 Grantová Agentura, Univerzita Karlova

Odkazy

PubMed 37957333
DOI 10.1007/s00114-023-01883-4
PII: 10.1007/s00114-023-01883-4
Knihovny.cz E-zdroje

The current ecological crisis has risen extinction rates to similar levels of ancient mass extinctions. However, it seems to not be acting uniformly across all species but affecting species differentially. This suggests that species' susceptibility to the extinction process is mediated by specific traits. Since understanding this response mechanism at large scales will benefit conservation effort around the world, we used the IUCN global threat status and population trends of 8281 extant bird species as proxies of the extinction risk to identify the species-specific traits affecting their susceptibility to extinction within the biogeographic regions and at the global scale. Using linear mixed effect models and multinomial models, we related the global threat status and the population trends with the following traits: migratory strategy, habitat and diet specialization, body size, and generation length. According to our results and independently of the proxy used, more vulnerable species are sedentary and have larger body size, longer generation time, and higher degree of habitat specialization. These relationships apply globally and show little variation across biogeographic regions. We suggest that such concordant patterns might be caused either by a widespread occurrence of the same threats such as habitat modification or by a uniform capacity of some traits to reflect the impact of different local threats. Regardless of the cause of this pattern, our study identified the traits that affect species' response capability to the current ecological crisis. Conservation effort should focus on the species with trait values indicating the limited response capacity to overcome this crisis.

Zobrazit více v PubMed

Adebola S, Opeyemi M (2018) Persistence of policy shocks to an environmental degradation index: the case of ecological footprint in 128 developed and developing countries. Ecol Indic 89:35–44. https://doi.org/10.1016/j.ecolind.2018.01.064 DOI

Almeida-Rocha JMD, Monsalvo JAB, Oliveira LDC (2019) Diet specialisation reduces the occupancy of cocoa agroforests by diurnal raptors. Bird Conserv Int 29:558–574. https://doi.org/10.1017/S0959270919000017 DOI

Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958 PubMed DOI

Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. https://doi.org/10.1038/nature09678 PubMed DOI

Barua M, Root-Bernstein M, Ladle RJ, Jepson P (2011) Defining flagship uses is critical for flagship selection: a critique of the IUCN Climate Change Flagship Fleet. AMBIO 40:431–435. https://doi.org/10.1007/s13280-010-0116-2 PubMed DOI PMC

Baumann M, Kamp J, Pötzschner F et al (2020) Declining human pressure and opportunities for rewilding in the steppes of Eurasia. Divers Distrib 26:1058–1070. https://doi.org/10.1111/ddi.13110 DOI

BirdLife International (2016) European Red List of Birds. Office for Official Publications of the European Communities, Luxembourg

Blackburn TM, Gaston KJ (1996) Abundance-body size relationships: the area you census tells you more. Oikos 75:303–309. https://doi.org/10.2307/3546254 DOI

Bolam FC, Mair L, Angelico M et al (2021) How many bird and mammal extinctions has recent conservation action prevented? Conserv Lett 14:e12762. https://doi.org/10.1111/conl.12762 DOI

Boyden S, Dovers S (1992) Natural-resource consumption and its environmental impacts in the Western world. Impacts of increasing per capita consumption. Ambio 21:63–69

Brändle M, Prinzing A, Pfeifer R, Brandl R (2002) Dietary niche breadth for Central European birds: correlations with species-specific traits. Evol Ecol Res 4:643–657

Burfield IJ, Rutherford CA, Fernando E, Grice H, Piggott A, Martin RW, Balman M, Evans MI, Staneva A (2023) Birds in Europe 4: the fourth assessment of Species of European Conservation Concern. Bird Conserv Int 33:e66. https://doi.org/10.1017/S0959270923000187 DOI

Burns F, Eaton MA, Burfield IJ, Klvaňová A, Šilarová E, Staneva A, Gregory RD (2021) Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol Evol 11(23):16647–16660. https://doi.org/10.1002/ECE3.8282 PubMed DOI PMC

Callaghan TC, Benedetti Y, Wilshire JH, Morelli F (2020) Avian trait specialization is negatively associated with urban tolerance. Oikos 129:1541–1551. https://doi.org/10.1111/oik.07356 DOI

Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241. https://doi.org/10.1126/science.1116030 PubMed DOI

Carlin J, Craig C, Little S, Donnelly M, Fox D et al (2020) Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ Pollut 264:114633. https://doi.org/10.1016/j.envpol.2020.114633 PubMed DOI

Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814. https://doi.org/10.1046/j.1523-1739.1999.98338.x DOI

Carrasco LR, Nghiem TPL, Chen Z, Barbier EB (2017) Unsustainable development pathways caused by tropical deforestation. Sci Adv 3:e1602602. https://doi.org/10.1126/sciadv.1602602 PubMed DOI PMC

Chapin FS III, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. https://doi.org/10.1038/35012241 PubMed DOI

Correl MD, Strasser MD, Green AW, Panjabi AO (2019) Quantifying specialist avifaunal decline in grassland birds of the Northern Great Plains. Ecosphere 10(1):e02523. https://doi.org/10.1002/ecs2.2523 DOI

Davey CM, Chamberlain DE, Newson SE, Noble DG, Johnston A (2012) Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob Ecol Biogeogr 21:568–578. https://doi.org/10.1111/j.1466-8238.2011.00693.x DOI

de Juana E (2004) Changes in the conservation status of birds in Spain, years 1954 to 2004. Ardeola 51(1):19–50

di Minin E, Clements HS, Correia RA, Cortés-Capano G, Fink C, Haukka A, Hausmann A, Kulkarni R, Bradshaw CJA (2021) Consequences of recreational hunting for biodiversity conservation and livelihoods. One Earth 4(2):238–253. https://doi.org/10.1016/J.ONEEAR.2021.01.014 DOI

Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. PNAS 113:11261–11265. https://doi.org/10.1073/pnas.1602480113 PubMed DOI PMC

Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194. https://doi.org/10.1111/conl.12258 DOI

Ducatez S, Giraudeau M, Thébaud C, Jacquin L (2017) Colour polymorphism is associated with lower extinction risk in birds. Glob Chang Biol 23(8):3030–3039. https://doi.org/10.1111/gcb.13734 PubMed DOI

Ducatez S, Sol D, Sayol F, Lefebvre L (2020) Behavioural plasticity is associated with reduced extinction risk in birds. Nat Ecol Evol 4:788–793. https://doi.org/10.1038/s41559-020-1168-8 PubMed DOI

Foden W, Butchart S, Stuart S et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. https://doi.org/10.1371/journal.pone.0065427

Fraixedas S, Linden A, Piha M, Cabeza M, Gregory R, Lehikoinen A (2020) A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol Ind 118:106728. https://doi.org/10.1016/j.ecolind.2020.106728 DOI

Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Ann Rev Ecol Syst 19:207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 DOI

Gaston KJ, Blackburn TM (1995) Birds, body size and the threat of extinction. Philos Trans R Soc London B Biol Sci 347:205–212. https://doi.org/10.1098/rstb.1995.0022 DOI

Gill FB, Prum RO (2019) Ornithology. In: Freeman WH (ed), 4th edn. Macmilian Learning, New York

Goudie AS (2018) Human impact on the natural environment. John Wiley & Sons, Hoboken

Hanzelka J, Reif J (2015) Responses to the black locust (Robinia pseudoacacia) invasion differ between habitat specialists and generalists in central European forest birds. J Ornithol 156:1015–1024. https://doi.org/10.1007/s10336-015-1231-4 DOI

Harestad AS, Bunnel FL (1979) Home range and body weight–a reevaluation. Ecology 60:389–402. https://doi.org/10.2307/1937667 DOI

Harrison S, Bruna E (1999) Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22:225–232. https://doi.org/10.1111/j.1600-0587.1999.tb00496.x DOI

Hill MRJ, Alisauskas RT, Ankney CD, Leafloor JO (2003) Influence of body size and condition on harvest and survival of juvenile Canada geese. J Wildl Manag 67:530–541. https://doi.org/10.2307/3802711 DOI

del Hoyo J, Elliot A, Sargatal J, Christie DA, de Juana E (2017) Handbook of the Birds of the World (HBW) Alive [WWW Document]. URL www.hbw.com

IUCN (2021) The IUCN Red List of Threatened Species. Version 2017

Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268. https://doi.org/10.1126/science.1102138 PubMed DOI

Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biol 13:1672–1684. https://doi.org/10.1111/j.1365-2486.2007.01386.x DOI

Julliard R, Jiguet F, Couvet D (2003) Common birds facing global changes: what makes a species at risk? Glob Chang Biol 10:148–154. https://doi.org/10.1111/j.1365-2486.2003.00723.x DOI

Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x PubMed DOI

Karpestam E, Merilaita S, Forsman A (2014) Body size influences differently the detectabilities of colour morphs of cryptic prey. Biol J Linn Soc 113:112–122. https://doi.org/10.1111/bij.12291 DOI

Kendeigh SC (1970) Energy requirements for existence in relation to size of bird. Condor 72:60–65. https://doi.org/10.2307/1366475 DOI

Klaassen RHG, Hake M, Strandberg R et al (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184. https://doi.org/10.1111/1365-2656.12135 PubMed DOI

Knapp S (2019) The link between diversity, ecosystem functions, and ecosystem services: drivers, risks, and societal responses. https://doi.org/10.1007/978-3-319-96229-0_3

Koenig R (2006) Vulture research soars as the scavengers’ numbers decline. Science 312:1591–1592. https://doi.org/10.1126/science.312.5780.1591 PubMed DOI

Koleček J, Albrecht T, Reif J (2014) Predictors of extinction risk of passerine birds in a Central European country. Anim Conserv 17:498–506. https://doi.org/10.1111/acv.12117 DOI

Koleček J, Reif J, Šálek M et al (2021) Global population trends in shorebirds: migratory behaviour makes species at risk. Sci Nat 108:9. https://doi.org/10.1007/s00114-021-01717-1 DOI

le Viol I, Jiguet F, Brotons L et al (2012) More and more generalists: two decades of changes in the European avifauna. Biol Lett 8:780–2. https://doi.org/10.1098/rsbl.2012.0496 PubMed DOI PMC

Lees AC, Haskell L, Allinson T, Bezeng SB, Burfield IJ, Renjifo LM, Rosenberg K, Viswanathan A, Butchart SHM (2022) State of the world’s birds. Ann Rev Environ Resour 47:231–260. https://doi.org/10.1146/ANNUREV-ENVIRON-112420-014642 DOI

Male TD, Bean MJ (2005) Measuring progress in US endangered species conservation. Ecol Lett 8(9):986–992. https://doi.org/10.1111/J.1461-0248.2005.00806.X PubMed DOI

Marone L, Olmedo M, Valdés DY, Zarco A, Casenave JL et al (2017) Diet switching of seed-eating birds wintering in grazed habitats of the central Monte Desert, Argentina. Condor 119:673–682. https://doi.org/10.1650/CONDOR-17-61.1 DOI

Mattila N, Kotiaho JS, Kaitala V, Komonen A (2008) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biol Conserv 141(9):2322–2328. https://doi.org/10.1016/j.biocon.2008.06.024 DOI

Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. https://doi.org/10.1371/journal.pbio.1001569 PubMed DOI PMC

Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML (2022) A global ecological signal of extinction risk in terrestrial vertebrates. Conserv Biol 36(3):e13852. https://doi.org/10.1111/COBI.13852 PubMed DOI

O’Rourke H, Lughadha EN, Bacon KL (2022) Can the extinction risk of Irish vascular plants be predicted using leaf traits? Biodivers Conserv 31:3113–3135. https://doi.org/10.1007/s10531-022-02477-8 DOI

Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA 97:12144–8. https://doi.org/10.1073/pnas.200223397 PubMed DOI PMC

Palacín C, Alonso JC, Martín CA, Alonso JA (2017) Changes in bird-migration patterns associated with human-induced mortality. Conserv Biol 31:106–115. https://doi.org/10.1111/cobi.12758 PubMed DOI

Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Change 4(3):217–221. https://doi.org/10.1038/NCLIMATE2113 DOI

Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355. https://doi.org/10.1126/science.aai9214

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evolut 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007 DOI

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Raja NB, Lauchstedt A, Pandolfi JM, Kim SW, Budd AF, Kiessling W (2021) Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecol Biogeogr 30(8):1597–1608. https://doi.org/10.1111/GEB.13321 DOI

Rivas-Salvador J, Hořák D, Reif J (2019) Spatial patterns in habitat specialization of European bird communities. Ecol Indic 105:57–69. https://doi.org/10.1016/j.ecolind.2019.05.063 DOI

Rosenberg K, Dokter AM, Blancher PJ et al (2019) Decline of the North American avifauna. Science 366(6461):120–124. https://doi.org/10.1126/science.aaw1313 PubMed DOI

Rutt CL, Jirinec V, Cohn-Haft M, Laurance WF, Stouffer PC (2019) Avian ecological succession in the Amazon: a long-term case study following experimental deforestation. Ecol Evol 9:13850–13861. https://doi.org/10.1002/ece3.5822 PubMed DOI PMC

Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020 DOI

Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38(4):380–392. https://doi.org/10.1111/ECOG.00983 DOI

Sedláček O, Mikeš M, Albrecht T, Reif J, Hořák D (2014) Evidence for an edge effect on avian nest predation in fragmented Afromontane Forests in the Bamenda-Banso Highlands, NW Cameroon. Trop Conserv Sci 7:720–732. https://doi.org/10.1177/19400829140070041 DOI

Sekercioglu C (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21(8):464–471. https://doi.org/10.1016/j.tree.2006.05.007 PubMed DOI

Shultz S, Bradbury RB, Evans KL, Gregory RD, Blackburn TM (2005) Brain size and resource specialization predict long-term population trends in British birds. Proc R Soc London B Biol Sci 272. https://doi.org/10.1098/rspb.2005.3250

Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259. https://doi.org/10.2307/2389364 DOI

Studds C, Kendall B, Murray N et al (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun 8:14895. https://doi.org/10.1038/ncomms14895 PubMed DOI PMC

Sullivan MJP, Newson SE, Pearce-Higgins JW (2016) Changing densities of generalist species underlie apparent homogenization of UK bird communities. IBIS 158:645–655. https://doi.org/10.1111/ibi.12370 DOI

Sutcliffe LME, Batáry P, Kormann U, Báldi A, Dicks LV et al (2015) Harnessing the biodiversity value of Central and Eastern European farmland. Divers Distrib 21:722–730. https://doi.org/10.1111/ddi.12288 DOI

Tilman D, Clark M, Williams DR, Kimmel K, Polasky S et al (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81. https://doi.org/10.1038/nature22900 PubMed DOI

Venables W, Ripley B (2002) Modern Applied Statistics with S, Fourth, edition. Springer, New York DOI

Vickery JA, Ewing SR, Smith KW et al (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. https://doi.org/10.1111/ibi.12118 DOI

Waltert M, Mardiastuti A, Mühlenberg M (2005) Effects of deforestation and forest modification on understorey birds in Central Sulawesi, Indonesia. Bird Conserv Int 15:257–273. https://doi.org/10.1017/S0959270905000432 DOI

Watson JEM., Evans T, Venter O, et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2(4):599–610. https://doi.org/10.1038/s41559-018-0490-x

Whytock RC, Buij R, Virani MZ, Morgan BJ (2016) Do large birds experience previously undetected levels of hunting pressure in the forests of Central and West Africa? Oryx 50:76–83. https://doi.org/10.1017/S0030605314000064 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...