Species-specific traits affect bird species' susceptibility to global change
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00648S
Grantová Agentura České Republiky
UNCE/SCI/005
Grantová Agentura, Univerzita Karlova
PubMed
37957333
DOI
10.1007/s00114-023-01883-4
PII: 10.1007/s00114-023-01883-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bird species, Ecological crisis, Ecological traits, Extinction risk, Extinction susceptibility, Global scale,
- MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- ekosystém MeSH
- extinkce biologická * MeSH
- klimatické změny * MeSH
- ptáci MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The current ecological crisis has risen extinction rates to similar levels of ancient mass extinctions. However, it seems to not be acting uniformly across all species but affecting species differentially. This suggests that species' susceptibility to the extinction process is mediated by specific traits. Since understanding this response mechanism at large scales will benefit conservation effort around the world, we used the IUCN global threat status and population trends of 8281 extant bird species as proxies of the extinction risk to identify the species-specific traits affecting their susceptibility to extinction within the biogeographic regions and at the global scale. Using linear mixed effect models and multinomial models, we related the global threat status and the population trends with the following traits: migratory strategy, habitat and diet specialization, body size, and generation length. According to our results and independently of the proxy used, more vulnerable species are sedentary and have larger body size, longer generation time, and higher degree of habitat specialization. These relationships apply globally and show little variation across biogeographic regions. We suggest that such concordant patterns might be caused either by a widespread occurrence of the same threats such as habitat modification or by a uniform capacity of some traits to reflect the impact of different local threats. Regardless of the cause of this pattern, our study identified the traits that affect species' response capability to the current ecological crisis. Conservation effort should focus on the species with trait values indicating the limited response capacity to overcome this crisis.
Department of Zoology Faculty of Science Palacky University Olomouc Czech Republic
Institute of Environmental Studies Faculty of Science Charles University Prague Czech Republic
PECBMS Group Czech Society for Ornithology Prague Czech Republic
Zobrazit více v PubMed
Adebola S, Opeyemi M (2018) Persistence of policy shocks to an environmental degradation index: the case of ecological footprint in 128 developed and developing countries. Ecol Indic 89:35–44. https://doi.org/10.1016/j.ecolind.2018.01.064 DOI
Almeida-Rocha JMD, Monsalvo JAB, Oliveira LDC (2019) Diet specialisation reduces the occupancy of cocoa agroforests by diurnal raptors. Bird Conserv Int 29:558–574. https://doi.org/10.1017/S0959270919000017 DOI
Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958 PubMed DOI
Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. https://doi.org/10.1038/nature09678 PubMed DOI
Barua M, Root-Bernstein M, Ladle RJ, Jepson P (2011) Defining flagship uses is critical for flagship selection: a critique of the IUCN Climate Change Flagship Fleet. AMBIO 40:431–435. https://doi.org/10.1007/s13280-010-0116-2 PubMed DOI PMC
Baumann M, Kamp J, Pötzschner F et al (2020) Declining human pressure and opportunities for rewilding in the steppes of Eurasia. Divers Distrib 26:1058–1070. https://doi.org/10.1111/ddi.13110 DOI
BirdLife International (2016) European Red List of Birds. Office for Official Publications of the European Communities, Luxembourg
Blackburn TM, Gaston KJ (1996) Abundance-body size relationships: the area you census tells you more. Oikos 75:303–309. https://doi.org/10.2307/3546254 DOI
Bolam FC, Mair L, Angelico M et al (2021) How many bird and mammal extinctions has recent conservation action prevented? Conserv Lett 14:e12762. https://doi.org/10.1111/conl.12762 DOI
Boyden S, Dovers S (1992) Natural-resource consumption and its environmental impacts in the Western world. Impacts of increasing per capita consumption. Ambio 21:63–69
Brändle M, Prinzing A, Pfeifer R, Brandl R (2002) Dietary niche breadth for Central European birds: correlations with species-specific traits. Evol Ecol Res 4:643–657
Burfield IJ, Rutherford CA, Fernando E, Grice H, Piggott A, Martin RW, Balman M, Evans MI, Staneva A (2023) Birds in Europe 4: the fourth assessment of Species of European Conservation Concern. Bird Conserv Int 33:e66. https://doi.org/10.1017/S0959270923000187 DOI
Burns F, Eaton MA, Burfield IJ, Klvaňová A, Šilarová E, Staneva A, Gregory RD (2021) Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol Evol 11(23):16647–16660. https://doi.org/10.1002/ECE3.8282 PubMed DOI PMC
Callaghan TC, Benedetti Y, Wilshire JH, Morelli F (2020) Avian trait specialization is negatively associated with urban tolerance. Oikos 129:1541–1551. https://doi.org/10.1111/oik.07356 DOI
Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241. https://doi.org/10.1126/science.1116030 PubMed DOI
Carlin J, Craig C, Little S, Donnelly M, Fox D et al (2020) Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ Pollut 264:114633. https://doi.org/10.1016/j.envpol.2020.114633 PubMed DOI
Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814. https://doi.org/10.1046/j.1523-1739.1999.98338.x DOI
Carrasco LR, Nghiem TPL, Chen Z, Barbier EB (2017) Unsustainable development pathways caused by tropical deforestation. Sci Adv 3:e1602602. https://doi.org/10.1126/sciadv.1602602 PubMed DOI PMC
Chapin FS III, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. https://doi.org/10.1038/35012241 PubMed DOI
Correl MD, Strasser MD, Green AW, Panjabi AO (2019) Quantifying specialist avifaunal decline in grassland birds of the Northern Great Plains. Ecosphere 10(1):e02523. https://doi.org/10.1002/ecs2.2523 DOI
Davey CM, Chamberlain DE, Newson SE, Noble DG, Johnston A (2012) Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob Ecol Biogeogr 21:568–578. https://doi.org/10.1111/j.1466-8238.2011.00693.x DOI
de Juana E (2004) Changes in the conservation status of birds in Spain, years 1954 to 2004. Ardeola 51(1):19–50
di Minin E, Clements HS, Correia RA, Cortés-Capano G, Fink C, Haukka A, Hausmann A, Kulkarni R, Bradshaw CJA (2021) Consequences of recreational hunting for biodiversity conservation and livelihoods. One Earth 4(2):238–253. https://doi.org/10.1016/J.ONEEAR.2021.01.014 DOI
Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. PNAS 113:11261–11265. https://doi.org/10.1073/pnas.1602480113 PubMed DOI PMC
Ducatez S, Shine R (2017) Drivers of extinction risk in terrestrial vertebrates. Conserv Lett 10:186–194. https://doi.org/10.1111/conl.12258 DOI
Ducatez S, Giraudeau M, Thébaud C, Jacquin L (2017) Colour polymorphism is associated with lower extinction risk in birds. Glob Chang Biol 23(8):3030–3039. https://doi.org/10.1111/gcb.13734 PubMed DOI
Ducatez S, Sol D, Sayol F, Lefebvre L (2020) Behavioural plasticity is associated with reduced extinction risk in birds. Nat Ecol Evol 4:788–793. https://doi.org/10.1038/s41559-020-1168-8 PubMed DOI
Foden W, Butchart S, Stuart S et al (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. https://doi.org/10.1371/journal.pone.0065427
Fraixedas S, Linden A, Piha M, Cabeza M, Gregory R, Lehikoinen A (2020) A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol Ind 118:106728. https://doi.org/10.1016/j.ecolind.2020.106728 DOI
Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Ann Rev Ecol Syst 19:207–233. https://doi.org/10.1146/annurev.es.19.110188.001231 DOI
Gaston KJ, Blackburn TM (1995) Birds, body size and the threat of extinction. Philos Trans R Soc London B Biol Sci 347:205–212. https://doi.org/10.1098/rstb.1995.0022 DOI
Gill FB, Prum RO (2019) Ornithology. In: Freeman WH (ed), 4th edn. Macmilian Learning, New York
Goudie AS (2018) Human impact on the natural environment. John Wiley & Sons, Hoboken
Hanzelka J, Reif J (2015) Responses to the black locust (Robinia pseudoacacia) invasion differ between habitat specialists and generalists in central European forest birds. J Ornithol 156:1015–1024. https://doi.org/10.1007/s10336-015-1231-4 DOI
Harestad AS, Bunnel FL (1979) Home range and body weight–a reevaluation. Ecology 60:389–402. https://doi.org/10.2307/1937667 DOI
Harrison S, Bruna E (1999) Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography 22:225–232. https://doi.org/10.1111/j.1600-0587.1999.tb00496.x DOI
Hill MRJ, Alisauskas RT, Ankney CD, Leafloor JO (2003) Influence of body size and condition on harvest and survival of juvenile Canada geese. J Wildl Manag 67:530–541. https://doi.org/10.2307/3802711 DOI
del Hoyo J, Elliot A, Sargatal J, Christie DA, de Juana E (2017) Handbook of the Birds of the World (HBW) Alive [WWW Document]. URL www.hbw.com
IUCN (2021) The IUCN Red List of Threatened Species. Version 2017
Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268. https://doi.org/10.1126/science.1102138 PubMed DOI
Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biol 13:1672–1684. https://doi.org/10.1111/j.1365-2486.2007.01386.x DOI
Julliard R, Jiguet F, Couvet D (2003) Common birds facing global changes: what makes a species at risk? Glob Chang Biol 10:148–154. https://doi.org/10.1111/j.1365-2486.2003.00723.x DOI
Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x PubMed DOI
Karpestam E, Merilaita S, Forsman A (2014) Body size influences differently the detectabilities of colour morphs of cryptic prey. Biol J Linn Soc 113:112–122. https://doi.org/10.1111/bij.12291 DOI
Kendeigh SC (1970) Energy requirements for existence in relation to size of bird. Condor 72:60–65. https://doi.org/10.2307/1366475 DOI
Klaassen RHG, Hake M, Strandberg R et al (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184. https://doi.org/10.1111/1365-2656.12135 PubMed DOI
Knapp S (2019) The link between diversity, ecosystem functions, and ecosystem services: drivers, risks, and societal responses. https://doi.org/10.1007/978-3-319-96229-0_3
Koenig R (2006) Vulture research soars as the scavengers’ numbers decline. Science 312:1591–1592. https://doi.org/10.1126/science.312.5780.1591 PubMed DOI
Koleček J, Albrecht T, Reif J (2014) Predictors of extinction risk of passerine birds in a Central European country. Anim Conserv 17:498–506. https://doi.org/10.1111/acv.12117 DOI
Koleček J, Reif J, Šálek M et al (2021) Global population trends in shorebirds: migratory behaviour makes species at risk. Sci Nat 108:9. https://doi.org/10.1007/s00114-021-01717-1 DOI
le Viol I, Jiguet F, Brotons L et al (2012) More and more generalists: two decades of changes in the European avifauna. Biol Lett 8:780–2. https://doi.org/10.1098/rsbl.2012.0496 PubMed DOI PMC
Lees AC, Haskell L, Allinson T, Bezeng SB, Burfield IJ, Renjifo LM, Rosenberg K, Viswanathan A, Butchart SHM (2022) State of the world’s birds. Ann Rev Environ Resour 47:231–260. https://doi.org/10.1146/ANNUREV-ENVIRON-112420-014642 DOI
Male TD, Bean MJ (2005) Measuring progress in US endangered species conservation. Ecol Lett 8(9):986–992. https://doi.org/10.1111/J.1461-0248.2005.00806.X PubMed DOI
Marone L, Olmedo M, Valdés DY, Zarco A, Casenave JL et al (2017) Diet switching of seed-eating birds wintering in grazed habitats of the central Monte Desert, Argentina. Condor 119:673–682. https://doi.org/10.1650/CONDOR-17-61.1 DOI
Mattila N, Kotiaho JS, Kaitala V, Komonen A (2008) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biol Conserv 141(9):2322–2328. https://doi.org/10.1016/j.biocon.2008.06.024 DOI
Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. https://doi.org/10.1371/journal.pbio.1001569 PubMed DOI PMC
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML (2022) A global ecological signal of extinction risk in terrestrial vertebrates. Conserv Biol 36(3):e13852. https://doi.org/10.1111/COBI.13852 PubMed DOI
O’Rourke H, Lughadha EN, Bacon KL (2022) Can the extinction risk of Irish vascular plants be predicted using leaf traits? Biodivers Conserv 31:3113–3135. https://doi.org/10.1007/s10531-022-02477-8 DOI
Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA 97:12144–8. https://doi.org/10.1073/pnas.200223397 PubMed DOI PMC
Palacín C, Alonso JC, Martín CA, Alonso JA (2017) Changes in bird-migration patterns associated with human-induced mortality. Conserv Biol 31:106–115. https://doi.org/10.1111/cobi.12758 PubMed DOI
Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Change 4(3):217–221. https://doi.org/10.1038/NCLIMATE2113 DOI
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355. https://doi.org/10.1126/science.aai9214
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evolut 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007 DOI
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Raja NB, Lauchstedt A, Pandolfi JM, Kim SW, Budd AF, Kiessling W (2021) Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecol Biogeogr 30(8):1597–1608. https://doi.org/10.1111/GEB.13321 DOI
Rivas-Salvador J, Hořák D, Reif J (2019) Spatial patterns in habitat specialization of European bird communities. Ecol Indic 105:57–69. https://doi.org/10.1016/j.ecolind.2019.05.063 DOI
Rosenberg K, Dokter AM, Blancher PJ et al (2019) Decline of the North American avifauna. Science 366(6461):120–124. https://doi.org/10.1126/science.aaw1313 PubMed DOI
Rutt CL, Jirinec V, Cohn-Haft M, Laurance WF, Stouffer PC (2019) Avian ecological succession in the Amazon: a long-term case study following experimental deforestation. Ecol Evol 9:13850–13861. https://doi.org/10.1002/ece3.5822 PubMed DOI PMC
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020 DOI
Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38(4):380–392. https://doi.org/10.1111/ECOG.00983 DOI
Sedláček O, Mikeš M, Albrecht T, Reif J, Hořák D (2014) Evidence for an edge effect on avian nest predation in fragmented Afromontane Forests in the Bamenda-Banso Highlands, NW Cameroon. Trop Conserv Sci 7:720–732. https://doi.org/10.1177/19400829140070041 DOI
Sekercioglu C (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21(8):464–471. https://doi.org/10.1016/j.tree.2006.05.007 PubMed DOI
Shultz S, Bradbury RB, Evans KL, Gregory RD, Blackburn TM (2005) Brain size and resource specialization predict long-term population trends in British birds. Proc R Soc London B Biol Sci 272. https://doi.org/10.1098/rspb.2005.3250
Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259. https://doi.org/10.2307/2389364 DOI
Studds C, Kendall B, Murray N et al (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun 8:14895. https://doi.org/10.1038/ncomms14895 PubMed DOI PMC
Sullivan MJP, Newson SE, Pearce-Higgins JW (2016) Changing densities of generalist species underlie apparent homogenization of UK bird communities. IBIS 158:645–655. https://doi.org/10.1111/ibi.12370 DOI
Sutcliffe LME, Batáry P, Kormann U, Báldi A, Dicks LV et al (2015) Harnessing the biodiversity value of Central and Eastern European farmland. Divers Distrib 21:722–730. https://doi.org/10.1111/ddi.12288 DOI
Tilman D, Clark M, Williams DR, Kimmel K, Polasky S et al (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81. https://doi.org/10.1038/nature22900 PubMed DOI
Venables W, Ripley B (2002) Modern Applied Statistics with S, Fourth, edition. Springer, New York DOI
Vickery JA, Ewing SR, Smith KW et al (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. https://doi.org/10.1111/ibi.12118 DOI
Waltert M, Mardiastuti A, Mühlenberg M (2005) Effects of deforestation and forest modification on understorey birds in Central Sulawesi, Indonesia. Bird Conserv Int 15:257–273. https://doi.org/10.1017/S0959270905000432 DOI
Watson JEM., Evans T, Venter O, et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2(4):599–610. https://doi.org/10.1038/s41559-018-0490-x
Whytock RC, Buij R, Virani MZ, Morgan BJ (2016) Do large birds experience previously undetected levels of hunting pressure in the forests of Central and West Africa? Oryx 50:76–83. https://doi.org/10.1017/S0030605314000064 DOI