• This record comes from PubMed

Mobility of Zn and Cu in Bentonites: Implications for Environmental Remediation

. 2024 Jun 17 ; 17 (12) : . [epub] 20240617

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
05.0.12.00/1.02.001/SUBB.IKGT.24.002 Kielce Univesity of Technology

The aim of this study was to evaluate the mobility of copper (Cu) and zinc (Zn) and their impact on the properties of bentonites and unfrozen water content. Limited research in this area necessitates further analysis to prevent the negative effects of metal interactions on bentonite effectiveness. Tests involved American (SWy-3, Stx-1b) and Slovak (BSvk) bentonite samples with Zn or Cu ion exchange. Sequential extraction was performed using the Community Bureau of Reference (BCR) method. Elemental content was analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES). Unfrozen water content was measured using nuclear magnetic resonance (1H-NMR) and differential scanning calorimetry (DSC). Results showed a significant influence of the main cation (Zn or Cu) on ion mobility, with toxic metal concentrations increasing mobility and decreasing residual fractions. Mobile Zn fractions increased with larger particle diameters, lower clay content, and shorter interplanar spacing, while the opposite was observed for Cu. Zn likely accumulated in larger clay pores, while Cu was immobilized in the bentonite complex. The stability of Zn or Cu ions increased with higher clay content or specific surface area. Residual Zn or Cu fractions were highest in uncontaminated bentonites with higher unfrozen water content, suggesting the potential formation of concentrated solutions in sub-zero temperatures, posing a threat to the clay-water environment, especially in cold regions.

See more in PubMed

Nkwaju R.Y., Nouping J.N.F., Bachirou S., Abo T.M., Deutou J.G.N., Djobo J.N.Y. Effective Stabilization of Cadmium and Copper in Iron-Rich Laterite-Based Geopolymers and Influence on Physical Properties. Materials. 2023;16:7605. doi: 10.3390/ma16247605. PubMed DOI PMC

Li Q., Wang Y., Li Y., Li L., Tang M., Hu W., Chen K., Ai S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022;825:153862. doi: 10.1016/j.scitotenv.2022.153862. PubMed DOI

Yu K., Xu J., Jiang X., Liu C., McCall W., Lu J. Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere. 2017;184:884–891. doi: 10.1016/j.chemosphere.2017.06.040. PubMed DOI

Pavlík Z., Záleská M., Pavlíková M., Pivák A., Nábělková J., Jankovský O., Jiříčková A., Chmel O., Průša F. Simultaneous Immobilization of Heavy Metals in MKPC-Based Mortar—Experimental Assessment. Materials. 2023;16:7525. doi: 10.3390/ma16247525. PubMed DOI PMC

Corral-Bobadilla M., Lostado-Lorza R., Somovilla-Gómez F., Escribano-García R. Biosorption of Cu(II) ions as a method for the effective use of activated carbon from grape stalk waste: RMS optimization and kinetic studies. Energy Sources Part A Recovery Util. Environ. Eff. 2022;44:4706–4726. doi: 10.1080/15567036.2022.2080891. DOI

Ziejewska C., Grela A., Łach M., Marczyk J., Hordyńska N., Szechyńska-Hebda M., Hebda M. Eco-friendly zeolites for innovative purification of water from cationic dye and heavy metal ions. J. Clean. Prod. 2023;406:136947. doi: 10.1016/j.jclepro.2023.136947. DOI

Hazrat A., Ezzat K., Ikram I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019;2019:6730305. doi: 10.1155/2019/6730305. DOI

Munir N., Jahangeer M., Bouyahya A., El Omari N., Ghchime R., Balahbib A., Aboulaghras S., Mahmood Z., Akram M., Ali Shah S.M., et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability. 2022;14:161. doi: 10.3390/su14010161. DOI

Plum L.M., Rink L., Haase H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi: 10.3390/ijerph7041342. PubMed DOI PMC

Janaszek A., Kowalik R. Analysis of Heavy Metal Contaminants and Mobility in Sewage sludge-soil Mixtures for Sustainable Agricultural Practices. Water. 2023;15:3992. doi: 10.3390/w15223992. DOI

Piri M., Sepehr E., Samadi A., Farhadi K.H., Alizadeh M. Contaminated Soil Amendment by Diatomite: Chemical Fractions of Zinc, Lead, Copper and Cadmium. Int. J. Environ. Sci. Technol. 2021;18:1191–1200. doi: 10.1007/s13762-020-02872-0. DOI

Wang Q., Li M., Yang J., Cui J., Zhou W., Guo X. Study on mechanical and permeability characteristics of nickel-copper-contaminated soil solidified by CFG. Environ. Sci. Pollut. Res. 2020;27:18577–18591. doi: 10.1007/s11356-020-08394-z. PubMed DOI

Tapiero H., Townsend D., Tew K. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003;57:386–398. doi: 10.1016/s0753-3322(03)00012-x. PubMed DOI PMC

Janaszek A., Silva A.F.d., Jurišević N., Kanuchova M., Kozáková Ľ., Kowalik R. The Assessment of Sewage Sludge Utilization in Closed-Loop Economy from an Environmental Perspective. Water. 2024;16:383. doi: 10.3390/w16030383. DOI

Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972. PubMed DOI PMC

Liao X.Y., Chen T.B., Wu B., Yan X.L., Nie C.J., Xie H., Zhai L.M., Xiao X.Y. Mining urban soil pollution: Concentrations and patterns of heavy metals in the soils of Jinchang, China. Chin. J. Geogr. Res. 2006;25:843–852.

Shang W., Tang Q., Zheng L., Cheng H. Chemical forms of heavy metals in agricultural soils affected by coal mining in the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China. Environ. Sci. Pollut. Res. 2016;23:23683–23693. doi: 10.1007/s11356-016-7599-8. PubMed DOI

Feng W., Xiao X., Li J., Xiao Q., Ma L., Gao Q., Wan Y., Huang Y., Liu T., Luo X., et al. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils. Chemosphere. 2023;315:137730. doi: 10.1016/j.chemosphere.2022.137730. PubMed DOI

Ma C., Ci K., Zhu J., Sun Z., Liu Z., Li X., Zhu Y., Tang C., Wang P., Liu Z. Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Sci. Total Environ. 2021;759:143501. doi: 10.1016/j.scitotenv.2020.143501. PubMed DOI

Koda E. Influence of vertical barrier surrounding old sanitary landfill on eliminating transport of pollutants on the basis of numerical modelling and monitoring results. Pol. J. Environ. Stud. 2012;21:929–935.

Koda E., Osinski P. Bentonite Cut Off Walls: Solution for Landfill Remedial Works. Environ. Geotech. 2017;4:223–232. doi: 10.1680/jenge.14.00022. DOI

Koda E., Miszkowska A., Osinski P., Sieczka A. Heavy metals contamination within restored landfill site in Poland. Environ. Geotech. 2020;7:512–521. doi: 10.1680/jenge.18.00031. DOI

Luhar I., Luhar S., Abdullah M.M.A.B., Razak R.A., Vizureanu P., Sandu A.V., Matasaru P.-D. A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. Materials. 2021;14:7456. doi: 10.3390/ma14237456. PubMed DOI PMC

Nartowska E. The effects of potentially toxic metals (copper and zinc) on selected physical and physico-chemical properties of bentonites. Heliyon. 2019;5:e02563. doi: 10.1016/j.heliyon.2019.e02563. PubMed DOI PMC

Kruse A.M., Darrow M.M. Adsorbed cation effects on unfrozen water in fine-grained frozen soil measured using pulsed nuclear magnetic resonance. Cold Reg. Sci. Technol. 2017;142:42–54. doi: 10.1016/j.coldregions.2017.07.006. DOI

Nartowska E., Kozłowski T., Kolankowska M. Exchangeable cations (Cu2+, Zn2+) effects on unfrozen water content in clay-water system using 1H NMR method. Cold Reg. Sci. Technol. 2021;192:103403. doi: 10.1016/j.coldregions.2021.103403. DOI

Nevidomskaya D.G., Minkina T.M., Soldatov A.V., Bauer T.V., Shuvaeva V.A., Zubavichus Y.V., Trigub A.L., Mandzhieva S.S., Dorovatovskii P.V., Popov Y.V. Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM-EDX analyses. Environ. Geochem. 2021;43:2301–2315. doi: 10.1007/s10653-020-00693-1. PubMed DOI

Pueyo M., Mateu J., Rigol A., Vidal M., López-Sánchez J.F., Rauret G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008;152:330–341. doi: 10.1016/j.envpol.2007.06.020. PubMed DOI

Zimmerman A.J., Weindorf D.C. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures. Int. J. Anal. Chem. 2010;2010:387803. doi: 10.1155/2010/387803. PubMed DOI PMC

Zhang Y., Chu G., Dong P., Xiao J., Meng Q., Baumgartel M., Xu B., Hao T. Enhanced electrokinetic remediation of lead- and cadmium- contaminated paddy soil by composite electrolyte of sodium chloride and citric acid. J. Soils Sediments. 2018;18:1915–1924. doi: 10.1007/s11368-017-1890-2. DOI

Kashem A., Singh B.R., Huq S.M.I., Kawai S. Fractionation and mobility of cadmium, lead and zinc in some contaminated and non-contaminated soils of Japan. J. Soil Sci. Environ. Manag. 2011;3:241–249.

Nartowska E., Kozłowski T. The Effect of Freeze-Thaw Cycling and the Initial Mass of Water on the Unfrozen Water Content of Calcium Bentonites Modified by Copper Ions. Minerals. 2022;12:66. doi: 10.3390/min12010066. DOI

Sintorini M., Widyatmoko H., Sinaga E., Aliyah N. Effect of pH on metal mobility in the soil. IOP Conf. Ser. Earth Environ. Sci. 2021;737:012071. doi: 10.1088/1755-1315/737/1/012071. DOI

Dutta J., Mishra A.K., Das P. Combined Effect of Inorganic Salts and Heavy Metals on the Engineering Behaviour of Compacted Bentonites. Int. J. Geosynth. Ground Eng. 2018;4:17. doi: 10.1007/s40891-018-0134-x. DOI

Nartowska E., Kozłowski T., Gawdzik J. Assessment of the influence of copper and zinc on the microstructural parameters and hydraulic conductivity of bentonites on the basis of SEM tests. Heliyon. 2019;5:e02142. doi: 10.1016/j.heliyon.2019.e02142. PubMed DOI PMC

He Q., He Y., Hu H., Lou W., Zhang Z., Zhang K., Chen Y., Ye W., Sun J. Laboratory investigation on the retention performance of a soil–bentonite mixture used as an engineered barrier: Insight into the effects of ionic strength and associated heavy metal ions. Environ. Sci. Pollut. Res. 2023;30:50162–50173. doi: 10.1007/s11356-023-25780-5. PubMed DOI

Deng H., Zhu L., Wang D., Ren L., Li W. Effect of modified bentonite on copper migration via bank soils in the Jialing River, Southwest China. Soil Tillage Res. 2022;218:105322. doi: 10.1016/j.still.2022.105322. DOI

Huang B., Yuan Z., Li D., Zheng M., Nie X., Liao Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Process. Impacts. 2020;22:1596–1615. doi: 10.1039/D0EM00189A. PubMed DOI

Gao Y., Li X. Effects of Bentonite Addition on the Speciation and Mobility of Cu and Ni in Soils from Old Mine Tailings. Sustainability. 2022;14:10878. doi: 10.3390/su141710878. DOI

Król A., Mizerna K., Bożym M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020;384:121502. doi: 10.1016/j.jhazmat.2019.121502. PubMed DOI

Kicińska A., Pomykała R., Izquierdo-Diaz M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021;73:e13203. doi: 10.1111/ejss.13203. DOI

Xu T., Nan F., Jiang X., Tang Y., Zeng Y., Zhang W., Shi B. Effect of soil pH on the transport, fractionation, and oxidation of chromium(III) Ecotoxicol. Environ. Saf. 2020;195:110459. doi: 10.1016/j.ecoenv.2020.110459. PubMed DOI

Hao W.D., Pudasainee D., Guota R., Kashiwabara T., Alessi D.S., Konhauser K.O. Effect of acidic conditions on surface properties and metal binding capacity of clay minerals. ACS Earth Space Chem. 2019;11:2421–2429. doi: 10.1021/acsearthspacechem.9b00166. DOI

Finžgar N., Tlustoš P., Leštan D. Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant Soil Environ. 2007;53:225–238. doi: 10.17221/2201-PSE. DOI

Namieśnik J., Rabajczyk A. The speciation and physicochemical forms of metals in surface waters and sediments. Chem. Speciat. Bioavailab. 2010;22:1–24. doi: 10.3184/095422910X12632119406391. DOI

Musso T.B., Parolo M.E., Pettinari G. pH, Ionic Strength, and Ion Competition Effect on Cu(II) and Ni(II) Sorption by a Na-bentonite Used as Liner Material. Pol. J. Environ. Stud. 2019;28:2299–2309. doi: 10.15244/pjoes/84922. PubMed DOI

Nartowska E., Kozłowski T. The Effect of the Concentration of Copper Ions on the Unfrozen Water Content in Bentonites Measured with the Use of DSC Method. Minerals. 2022;12:632. doi: 10.3390/min12050632. DOI

Chipera S.J., Bish D.L. Baseline studies of the clay minerals society source clays: Powder x-ray diffraction analyses. Clays Clay Miner. 2001;49:398–409. doi: 10.1346/CCMN.2001.0490507. DOI

Górniak K. Bentonite from the Central Slovakia Volcanic Field—A Prospective Raw Material for Polish Industry. Mineralogia. 2017;48:23–38. doi: 10.1515/mipo-2017-0009. DOI

PN-ISO 9297:1994, Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method), Polish Committee for Standardization. [(accessed on 1 January 2024)]. Available online: https://www.intertekinform.com/en-gb/standards/pn-iso-9297-1994-941921_saig_pkn_pkn_2216839.

Einax J.W., Nischwitz V. Inert sampling and sample preparation- the influence of oxygen on heavy metal mobility in river sediments. Fresenius J. Anal Chem. 2001;371:643–651. doi: 10.1007/s002160100936. PubMed DOI

Ure A., Quevaullier P.H., Muntau H., Griepink B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the CEC. J. Environ. Anal. Chem. 1993;51:135–151. doi: 10.1080/03067319308027619. DOI

Fernández-Ondoño E., Bacchetta G., Lallena A., Navarro F., Ortiz I., Jiménez N. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J. Geochem. Explor. 2017;172:133–141. doi: 10.1016/j.gexplo.2016.09.013. DOI

ISO 13320:2020 Standard, Particle Size Analysis—Laser Diffraction Methods, Technical Committee: ISO/TC 24/SC 4, ICS: 19.120. [(accessed on 1 January 2022)]. Available online: https://www.iso.org/standard/69111.html.

Sympatec Guidelines. [(accessed on 9 June 2024)]. Available online: https://www.tecnos.ro/brosuri/HELOS.pdf.

Su M., Liu C., Wang L., Zheng W. Prediction of saturated hydraulic conductivity of sandy soil using Sauter mean diameter of soil particles. Eur. J. Soil Sci. 2022;73:e13229. doi: 10.1111/ejss.13229. DOI

Nartowska E., Kozłowski T., Kolankowska M. The changes in the microstructure of ion-exchanged clays. E3S Web Conf. 2017;17:00063. doi: 10.1051/e3sconf/20171700063. DOI

Nartowska E., Kanuchova M., Kozáková Ľ. Assessment of Unfrozen Water Content in Copper Bentonites Using the 1H NMR Technique: Optimization, the Method’s Limitation, and Comparative Analysis with DSC. Materials. 2023;16:7577. doi: 10.3390/ma16247577. PubMed DOI PMC

Hube L. Understanding and Implementing ISO/IEC 17025. [(accessed on 3 June 2024)]. Available online: https://www.demarcheiso17025.com/document/Understanding%20and%20Implementing%20ISO17025.pdf.

Rabiej M., editor. Statistical Analyses Using Statistica Program. 2nd ed. Heliyon; Gliwice, Poland: 2018. (In Polish)

Klik B., Holatko J., Jaskulska I., Gusiatin M.Z., Hammerschmiedt T., Brtnicky M., Liniauskienė E., Baltazar T., Jaskulski D., Kintl A., et al. Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals. Materials. 2022;15:8331. doi: 10.3390/ma15238331. PubMed DOI PMC

Nath H., Kabir M.H., Kafy A., Zullyadini A., Rahaman A., Rahman M.T. Geotechnical properties and applicability of bentonite-modified local soil as landfill and environmental sustainability liners. Environ. Sustain. Indic. 2023;18:100241. doi: 10.1016/j.indic.2023.100241. DOI

Liu M., Zhu J., Yang X., Fu Q., Hu H., Huang Q. Mineralization of organic matter during the immobilization of heavy metals in polluted soil treated with minerals. Chemosphere. 2022;301:134794. doi: 10.1016/j.chemosphere.2022.134794. PubMed DOI

Zhang D., Li T., Ding A., Wu X. Effects of an additive (hydroxyapatite-bentonite-biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil. RSC Adv. Mar. 2021;26:12200–12208. doi: 10.1039/D1RA00565K. PubMed DOI PMC

Wang Z.Q., Li Y.B., Tan X.P., He W.X., Xie W., Megharaj M., Wei G.H. Effect of arsenate contamination on free, immobilized and soil alkaline phosphatases: Activity, kinetics and thermodynamics. Eur. J. Soil Sci. 2017;68:126–135. doi: 10.1111/ejss.12397. DOI

Angelaki A., Dionysidis A., Sihag P., Golia E.E. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land. 2022;11:290. doi: 10.3390/land11020290. DOI

Alloway B.J. In: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. 3rd ed. Alloway B.J., editor. Blackie Academic and Professional; London, UK: 2013.

Barker A.J., Douglas T.A., Jacobson A.D., McClelland J.W., Ilgen A.G., Khosh M.S., Lehn G.O., Trainor T.P. Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics. Chem. Geol. 2014;381:180–193. doi: 10.1016/j.chemgeo.2014.05.012. DOI

Rui D., Wu W., Zhang H., Li G., Wang S., Ito Y. Optimization analysis of heavy metal pollutants removal from fine-grained soil by freeze-thaw and washing technology. Cold Reg. Sci. Technol. 2020;173:103025. doi: 10.1016/j.coldregions.2020.103025. DOI

Rooney E.C., Bailey V.L., Patel K.F., Dragila M., Battu A.K., Buchko A.C., Gallo A.C., Hatten J., Possinger A.R., Qafoku O., et al. Soil pore network response to freeze-thaw ycles in permafrost aggregates. Geoderma. 2022;411:115674. doi: 10.1016/j.geoderma.2021.115674. DOI

Wu T., Rui D., Zhang J., Li G., Wang S., Ito Y. Removal of heavy metal pollutant from clayey soil based on repeated ice-segregation: A laboratory evaluation. Cold Reg. Sci. Technol. 2022;201:103626. doi: 10.1016/j.coldregions.2022.103626. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...