Development and therapeutic evaluation of 5D3(CC-MLN8237)3.2 antibody-theranostic conjugates for PSMA-positive prostate cancer therapy

. 2024 ; 15 () : 1385598. [epub] 20240501

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38751786

Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management. Conjugating further with in vitro or in vivo imaging agents, ADCs can be used as antibody-theranostic conjugates (ATCs) for diagnostic and image-guided drug delivery. In this study, we have developed a novel ATC for PSMA (+) PC therapy utilizing (a) anti-PSMA 5D3 mAb, (b) Aurora A kinase inhibitor, MLN8237, and (c) for the first time using tetrazine (Tz) and trans-cyclooctene (TCO) click chemistry-based conjugation linker (CC linker) in ADC development. The resulting 5D3(CC-MLN8237)3.2 was labeled with suitable fluorophores for in vitro and in vivo imaging. The products were characterized by SDS-PAGE, MALDI-TOF, and DLS and evaluated in vitro by optical imaging, flow cytometry, and WST-8 assay for cytotoxicity in PSMA (+/-) cells. Therapeutic efficacy was determined in human PC xenograft mouse models following a designed treatment schedule. After the treatment study animals were euthanized, and toxicological studies, complete blood count (CBC), blood clinical chemistry analysis, and H&E staining of vital organs were conducted to determine side effects and systemic toxicities. The IC50 values of 5D3(CC-MLN8237)3.2-AF488 in PSMA (+) PC3-PIP and PMSA (-) PC3-Flu cells are 8.17 nM and 161.9 nM, respectively. Pure MLN8237 shows 736.9 nM and 873.4 nM IC50 values for PC3-PIP and PC3-Flu cells, respectively. In vivo study in human xenograft mouse models confirmed high therapeutic efficacy of 5D3(CC-MLN8237)3.2-CF750 with significant control of PSMA (+) tumor growth with minimal systemic toxicity in the treated group compared to PSMA (-) treated and untreated groups. Approximately 70% of PSMA (+) PC3-PIP tumors did not exceed the threshold of the tumor size in the surrogate Kaplan-Meyer analysis. The novel ATC successfully controlled the growth of PSMA (+) tumors in preclinical settings with minimal systemic toxicities. The therapeutic efficacy and favorable safety profile of novel 5D3(CC-MLN8237)3.2 ATC demonstrates their potential use as a theranostic against aggressive PC.

Zobrazit více v PubMed

Antonarakis E. S., Piulats J. M., Gross-Goupil M., Goh J., Ojamaa K., Hoimes C. J., et al. (2020). Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38 (5), 395–405. 10.1200/JCO.19.01638 PubMed DOI PMC

Arranz A., Ripoll J. (2015). Advances in optical imaging for pharmacological studies. Front. Pharmacol. 6, 189. 10.3389/fphar.2015.00189 PubMed DOI PMC

Bakhtiar R. (2016). Antibody drug conjugates. Biotechnol. Lett. 38, 1655–1664. 10.1007/s10529-016-2160-x PubMed DOI

Barr A. R., Gergely F. (2007). Aurora-A: the maker and breaker of spindle poles. J. Cell Sci. 120 (17), 2987–2996. 10.1242/jcs.013136 PubMed DOI

Blackman M. L., Royzen M., Fox J. M. (2008). Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130 (41), 13518–13519. 10.1021/ja8053805 PubMed DOI PMC

Cheung C. H., Coumar M. S., Hsieh H. P., Chang J. Y. (2009). Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin. Investig. Drugs 18 (4), 379–398. 10.1517/13543780902806392 PubMed DOI

Dhavale R. P., Waifalkar P. P., Sharma A., Dhavale R. P., Sahoo S. C., Kollu P., et al. (2018). Monolayer grafting of aminosilane on magnetic nanoparticles: an efficient approach for targeted drug delivery system. J. Colloid Interface Sci. 529, 415–425. 10.1016/j.jcis.2018.06.006 PubMed DOI

Diamantis N., Banerji U. (2016). Antibody-drug conjugates--an emerging class of cancer treatment. Br. J. Cancer 114 (4), 362–367. 10.1038/bjc.2015.435 PubMed DOI PMC

Donin N. M., Reiter R. E. (2018). Why targeting PSMA is a game changer in the management of prostate cancer. J. Nucl. Med. 59 (2), 177–182. 10.2967/jnumed.117.191874 PubMed DOI PMC

Drago J. Z., Modi S., Chandarlapaty S. (2021). Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18 (6), 327–344. 10.1038/s41571-021-00470-8 PubMed DOI PMC

Du J., Hannon G. J. (2004). Suppression of p160ROCK bypasses cell cycle arrest after Aurora-A/STK15 depletion. Proc. Natl. Acad. Sci. U. S. A. 101 (24), 8975–8980. 10.1073/pnas.0308484101 PubMed DOI PMC

Einstein D. J., Arai S., Calagua C., Xie F., Voznesensky O., Capaldo B. J., et al. (2021). Metastatic castration-resistant prostate cancer remains dependent on oncogenic drivers found in primary tumors. JCO Precis. Oncol. 5, 1514–1522. 10.1200/PO.21.00059 PubMed DOI PMC

Evans A. J. (2018). Treatment effects in prostate cancer. Mod. Pathol. 31, 110–121. 10.1038/modpathol.2017.158 PubMed DOI

Galsky M. D., Eisenberger M., Moore-Cooper S., Kelly W. K., Slovin S. F., DeLaCruz A., et al. (2008). Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J. Clin. Oncol. 26 (13), 2147–2154. 10.1200/JCO.2007.15.0532 PubMed DOI

Ghosh A., Heston W. D. (2004). Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell Biochem. 91 (3), 528–539. 10.1002/jcb.10661 PubMed DOI

Görgün G., Calabrese E., Hideshima T., Ecsedy J., Perrone G., Mani M., et al. (2010). A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood, J. Am. Soc. Hematol. 115 (25), 5202–5213. 10.1182/blood-2009-12-259523 PubMed DOI PMC

Hapuarachchige S., Artemov D. (2020). Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front. Oncol. 10, 1131. 10.3389/fonc.2020.01131 PubMed DOI PMC

Hapuarachchige S., Huang C. T., Donnelly M. C., Barinka C., Lupold S. E., Pomper M. G., et al. (2020). Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer. Mol. Pharm. 17 (1), 98–108. 10.1021/acs.molpharmaceut.9b00788 PubMed DOI PMC

Harrington E. A., Bebbington D., Moore J., Rasmussen R. K., Ajose-Adeogun A. O., Nakayama T., et al. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo . Nat. Med. 10 (3), 262–267. 10.1038/nm1003 PubMed DOI

Herrmann K., Larson S. M., Weber W. A. (2017). Theranostic concepts: more than just a fashion trend—introduction and overview. J. Nucl. Med. 58 (2), 1S–2S. 10.2967/jnumed.117.199570 PubMed DOI

Hoar K., Chakravarty A., Rabino C., Wysong D., Bowman D., Roy N., et al. (2007). MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol. Cell Biol. 27 (12), 4513–4525. 10.1128/MCB.02364-06 PubMed DOI PMC

Huang C. T., Guo X., Barinka C., Lupold S. E., Pomper M. G., Gabrielson K., et al. (2020). Development of 5D3-DM1: a novel anti-prostate-specific membrane antigen antibody-drug conjugate for PSMA-positive prostate cancer therapy. Mol. Pharm. 17 (9), 3392–3402. 10.1021/acs.molpharmaceut.0c00457 PubMed DOI PMC

Jeitner T. M., Babich J. W., Kelly J. M. (2022). Advances in PSMA theranostics. Transl. Oncol. 22, 101450. 10.1016/j.tranon.2022.101450 PubMed DOI PMC

Lindner U., Lawrentschuk N., Weersink R. A., Davidson S. R., Raz O., Hlasny E., et al. (2010). Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur. Urol. 57 (6), 1111–1114. 10.1016/j.eururo.2010.03.008 PubMed DOI

Lorente D., Fizazi K., Sweeney C., de Bono J. S. (2016). Optimal treatment sequence for metastatic castration-resistant prostate cancer. Eur. Urol. Focus 2 (5), 488–498. 10.1016/j.euf.2016.10.008 PubMed DOI

Mahesh S., Tang K. C., Raj M. (2018). Amide bond activation of biological molecules. Molecules 23, 2615. 10.3390/molecules23102615 PubMed DOI PMC

Malumbres M., Perez de Castro I. (2014). Aurora kinase A inhibitors: promising agents in antitumoral therapy. Expert Opin. Ther. Targets 18 (12), 1377–1393. 10.1517/14728222.2014.956085 PubMed DOI

Manfredi M. G., Ecsedy J. A., Chakravarty A., Silverman L., Zhang M., Hoar K. M., et al. (2011). Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 17 (24), 7614–7624. 10.1158/1078-0432.CCR-11-1536 PubMed DOI

Marei H. E., Cenciarelli C., Hasan A. (2022). Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int. 22 (1), 255. 10.1186/s12935-022-02679-8 PubMed DOI PMC

Milowsky M. I., Galsky M. D., Morris M. J., Crona D. J., George D. J., Dreicer R., et al. (2016). Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol. 34 (12), 530 e515–e530. 10.1016/j.urolonc.2016.07.005 PubMed DOI PMC

Mjaess G., Aoun F., Rassy E., Diamand R., Albisinni S., Roumeguère T. (2023). Antibody-drug conjugates in prostate cancer: where are we? Clin. Genitourin. Cancer 21 (1), 171–174. 10.1016/j.clgc.2022.07.009 PubMed DOI

Moore A. S., Blagg J., Linardopoulos S., Pearson A. D. (2010). Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 24 (4), 671–678. 10.1038/leu.2010.15 PubMed DOI

Mottet N., Bellmunt J., Bolla M., Briers E., Cumberbatch M. G., De Santis M., et al. (2017). EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71 (4), 618–629. 10.1016/j.eururo.2016.08.003 PubMed DOI

Nováková Z., Foss C. A., Copeland B. T., Morath V., Baranová P., Havlínová B., et al. (2017). Novel monoclonal antibodies recognizing human prostate‐specific membrane antigen (PSMA) as research and theranostic tools. Prostate 77 (7), 749–764. 10.1002/pros.23311 PubMed DOI PMC

Ojha T., Rizzo L., Storm G., Kiessling F., Lammers T. (2015). Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin. Drug Deliv. 12 (8), 1203–1207. 10.1517/17425247.2015.1059420 PubMed DOI PMC

Perera M., Krishnananthan N., Lindner U., Lawrentschuk N. (2016). An update on focal therapy for prostate cancer. Nat. Rev. Urol. 13 (11), 641–653. 10.1038/nrurol.2016.177 PubMed DOI

Perez Fidalgo J. A., Roda D., Rosello S., Rodriguez-Braun E., Cervantes A. (2009). Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin. Transl. Oncol. 11 (12), 787–798. 10.1007/s12094-009-0447-2 PubMed DOI

Petrylak D. P., Vogelzang N. J., Chatta K., Fleming M. T., Smith D. C., Appleman L. J., et al. (2020). PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study. Prostate 80 (1), 99–108. 10.1002/pros.23922 PubMed DOI

Rajagopalan A., Kroutil W. (2011). Biocatalytic reactions: selected highlights. Mater. Today 14 (4), 144–152. 10.1016/s1369-7021(11)70086-4 DOI

Rosellini M., Santoni M., Mollica V., Rizzo A., Cimadamore A., Scarpelli M., et al. (2021). Treating prostate cancer by antibody-drug conjugates. Int. J. Mol. Sci. 22 (4), 1551. 10.3390/ijms22041551 PubMed DOI PMC

Rosenfeld L., Sananes A., Zur Y., Cohen S., Dhara K., Gelkop S., et al. (2020). Nanobodies targeting prostate-specific membrane antigen for the imaging and therapy of prostate cancer. J. Med. Chem. 63 (14), 7601–7615. 10.1021/acs.jmedchem.0c00418 PubMed DOI PMC

Sardinha M., Palma Dos Reis A. F., Barreira J. V., Fontes Sousa M., Pacey S., Luz R. (2023). Antibody-drug conjugates in prostate cancer: a systematic review. Cureus 15 (2), e34490. 10.7759/cureus.34490 PubMed DOI PMC

Sartor O., de Bono J. S. (2018). Metastatic prostate cancer. N. Engl. J. Med. 378 (7), 645–657. 10.1056/NEJMra1701695 PubMed DOI

Siegel R. L., Giaquinto A. N., Jemal A. (2024). Cancer statistics, 2024. CA Cancer J. Clin. 74 (1), 12–49. 10.3322/caac.21820 PubMed DOI

Siegel R. L., Miller K. D., Wagle N. S., Jemal A. (2023). Cancer statistics, 2023. CA Cancer J. Clin. 73 (1), 17–48. 10.3322/caac.21763 PubMed DOI

Tayyar Y., Jubair L., Fallaha S., McMillan N. A. J. (2017). Critical risk-benefit assessment of the novel anti-cancer aurora a kinase inhibitor alisertib (MLN8237): a comprehensive review of the clinical data. Crit. Rev. Oncol. Hematol. 119, 59–65. 10.1016/j.critrevonc.2017.09.006 PubMed DOI

Vazquez R., Civenni G., Kokanovic A., Shinde D., Cantergiani J., Marchetti M., et al. (2021). Efficacy of novel bromodomain and extraterminal inhibitors in combination with chemotherapy for castration-resistant prostate cancer. Eur. Urol. Oncol. 4 (3), 437–446. 10.1016/j.euo.2019.07.013 PubMed DOI

Venkatakrishnan K., Zhou X., Ecsedy J., Mould D. R., Liu H., Danaee H., et al. (2015). Dose selection for the investigational anticancer agent alisertib (MLN8237): pharmacokinetics, pharmacodynamics, and exposure-safety relationships. J. Clin. Pharmacol. 55 (3), 336–347. 10.1002/jcph.410 PubMed DOI

Veronese F. M., Mero A. (2008). The impact of PEGylation on biological therapies. BioDrugs 22 (5), 315–329. 10.2165/00063030-200822050-00004 PubMed DOI

Wang X., Xuetao X., Wu M., Wu P., Sheng Z., Liu W., et al. (2022). Inhibitory effect of roburic acid in combination with docetaxel on human prostate cancer cells. J. Enzyme Inhib. Med. Chem. 37 (1), 542–553. 10.1080/14756366.2021.2018684 PubMed DOI PMC

Yan M., Wang C., He B., Yang M., Tong M., Long Z., et al. (2016). Aurora-A kinase: a potent oncogene and target for cancer therapy. Med. Res. Rev. 36 (6), 1036–1079. 10.1002/med.21399 PubMed DOI

Yang N., Matthew M. A., Yao C. (2023). Roles of cysteine proteases in biology and pathogenesis of parasites. Microorganisms 11 (6), 1397. 10.3390/microorganisms11061397 PubMed DOI PMC

Zhou X., Mould D. R., Yuan Y., Fox E., Greengard E., Faller D. V., et al. (2022). Population pharmacokinetics and exposure-safety relationships of alisertib in children and adolescents with advanced malignancies. J. Clin. Pharmacol. 62 (2), 206–219. 10.1002/jcph.1958 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace