Optical and MRI-Guided Theranostic Application of Ultrasmall Superparamagnetic Iron Oxide Nanodrug Conjugate for PSMA-Positive Prostate Cancer Therapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39933703
PubMed Central
PMC11873945
DOI
10.1021/acsami.4c16009
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, anti-PSMA antibody, image-guided drug delivery, optical imaging, prostate cancer, prostate-specific membrane antigen, targeted therapy, ultrasmall superparamagnetic iron oxide nanoparticles,
- MeSH
- antigeny povrchové * metabolismus MeSH
- dextrany chemie MeSH
- glutamátkarboxypeptidasa II * metabolismus MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- magnetické nanočástice oxidů železa chemie MeSH
- magnetické nanočástice chemie terapeutické užití MeSH
- maytansin chemie farmakologie terapeutické užití MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prostaty * diagnostické zobrazování farmakoterapie patologie metabolismus MeSH
- teranostická nanomedicína * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny povrchové * MeSH
- dextrany MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II * MeSH
- magnetické nanočástice MeSH
- maytansin MeSH
Active targeting is more effective than conventional passive targeted drug delivery systems in increasing therapeutic efficacy and minimizing systemic toxicities. Importantly, the nanoparticle-based targeted drug delivery systems combine active and passive targeting properties and significantly enhance therapeutic efficacy. In this study, we utilized ultrasmall superparamagnetic iron oxide (uSPIO) nanoparticles conjugated with anti-prostate-specific membrane antigen (PSMA) 5D3 monoclonal antibody, mertansine (DM1) antitubulin agent, and fluorophore to develop a targeted uSPIO-5D3-DM1-AF488/CF750 nanotheranostic for PSMA(+) prostate cancer (PC) therapy. This agent enables multimodality in vivo imaging using near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI). uSPIO-5D3-DM1-AF488 is selectively internalized into PSMA-positive cells by receptor-mediated endocytosis, and uSPIO-5D3-DM1-CF750 exhibited 1.62 and 166.2 ng/mL IC50 values in PSMA(+) and PSMA(-) cells, respectively. The image-guided therapeutic study was conducted in vivo in human PC xenograft mouse models bearing bilateral PSMA(±) tumors (n = 10, two 10 mg/kg doses on days 1 and 14). The therapeutic results exhibited a significant control of the growth of PSMA(+) tumors starting at day 5 (p = 0.05) and significantly improved efficacy after day 9 (p = 0.0005) during the treatment period (t = 21 days). We observed the PSMA-specific uptake of uSPIO-5D3-DM1-CF750 in tumors in NIR IVIS Xenogen images and T1- and T2-weighted MRI with 20.6% and 42% reduction of overall T1 and T2, respectively. Approximately 70% of mice with PSMA(+) tumors treated with uSPIO-5D3-DM1-CF750 survived or did not exceed the threshold level of the tumor size during the treatment. Ex vivo biodistribution study proved 50% and 45% higher uptake of uSPIO-5D3-DM1-CF750 by PSMA(+) tumors compared to untargeted uSPIO-DM1-CF750 by PSMA(+) tumors and uSPIO-5D3-DM1-CF750 by PSMA(-) tumors, respectively. ICP-MS analysis demonstrated a 73% increase in uSPIO-5D3-DM1-CF750 uptake by PSMA(+) tumors compared to PSMA(+) tumors treated with pure uSPIO. The toxicological results reveal the safe profile in systemic toxicities without life-threatening changes in the complete blood count and clinical chemistry profile of toxicology.
Zobrazit více v PubMed
Wang L.; Lu B.; He M.; Wang Y.; Wang Z.; Du L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front Public Health 2022, 10, 81104410.3389/fpubh.2022.811044. PubMed DOI PMC
Siegel R. L.; Miller K. D.; Wagle N. S.; Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73 (1), 17–48. 10.3322/caac.21763. PubMed DOI
Siegel R. L.; Giaquinto A. N.; Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74 (1), 12–49. 10.3322/caac.21820. PubMed DOI
Evans A. J. Treatment effects in prostate cancer. Mod. Pathol. 2018, 31 (S1), 110–121. 10.1038/modpathol.2017.158. PubMed DOI
Einstein D. J.; Arai S.; Calagua C.; et al. Metastatic castration-resistant prostate cancer remains dependent on oncogenic drivers found in primary tumors. JCO Precision Oncology 2021, 5, 1514–1522. 10.1200/PO.21.00059. PubMed DOI PMC
Sartor O.; de Bono J. S. Metastatic prostate cancer. New England Journal of Medicine 2018, 378 (7), 645–657. 10.1056/NEJMra1701695. PubMed DOI
Perera M.; Papa N.; Roberts M.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 77 (4), 403–417. 10.1016/j.eururo.2019.01.049. PubMed DOI
Mannweiler S.; Amersdorfer P.; Trajanoski S.; Terrett J. A.; King D.; Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009, 15 (2), 167–72. 10.1007/s12253-008-9104-2. PubMed DOI
Ghosh A.; Heston W. D.; et al. J. Cell Biochem. 2004, 91 (3), 528–39. 10.1002/jcb.10661. PubMed DOI
Miyahira A. K.; Soule H. R. The history of prostate-specific membrane antigen as a theranostic target in prostate cancer: the cornerstone role of the prostate cancer foundation. J. Nucl. Med. 2022, 63 (3), 331–338. 10.2967/jnumed.121.262997. PubMed DOI
Bakht M. K.; Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat. Rev. Urol. 2025, 22, 26.10.1038/s41585-024-00900-z. PubMed DOI PMC
Herrmann K.; Larson S. M.; Weber W. A. Theranostic Concepts: More Than Just a Fashion Trend—Introduction and Overview. J. Nucl. Med. 2017, 58 (Supplement 2), 1S–2S. 10.2967/jnumed.117.199570. PubMed DOI
Levine R.; Krenning E. P. Clinical History of the Theranostic Radionuclide Approach to Neuroendocrine Tumors and Other Types of Cancer: Historical Review Based on an Interview of Eric P. Krenning by Rachel Levine. J. Nucl. Med. 2017, 58 (Suppl 2), 3S–9S. 10.2967/jnumed.116.186502. PubMed DOI
Jewell K.; Hofman M. S.; Ong J. S. L.; Levy S. Emerging Theranostics for Prostate Cancer and a Model of Prostate-specific Membrane Antigen Therapy. Radiology 2024, 311 (1), e23170310.1148/radiol.231703. PubMed DOI
He S.; Song J.; Qu J.; Cheng Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47 (12), 4258–4278. 10.1039/C8CS00234G. PubMed DOI
Penet M.-F.; Chen Z.; Kakkad S.; Pomper M. G.; Bhujwalla Z. M. Theranostic imaging of cancer. Eur. J. Radiol. 2012, 81 (1), S124.10.1016/S0720-048X(12)70051-7. PubMed DOI PMC
Xia Y.; Xu C.; Zhang X.; et al. Liposome-based probes for molecular imaging: from basic research to the bedside. Nanoscale 2019, 11 (13), 5822–5838. 10.1039/C9NR00207C. PubMed DOI
Bossmann S. H.; Payne M. M.; Kalita M.; Bristow R. M. D.; Afshar A.; Perera A. S. Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022, 14 (10), 2093.10.3390/pharmaceutics14102093. PubMed DOI PMC
Vakili-Ghartavol R.; Momtazi-Borojeni A. A.; Vakili-Ghartavol Z.; et al. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif Cells Nanomed Biotechnol. 2020, 48 (1), 443–451. 10.1080/21691401.2019.1709855. PubMed DOI
Mahmoudi M.; Hosseinkhani H.; Hosseinkhani M.; et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 2011, 111 (2), 253–280. 10.1021/cr1001832. PubMed DOI
Oghabian M. A.; Gharehaghaji N.; Masoudi A.; et al. Effect of coating materials on lymph nodes detection using magnetite nanoparticles. Advanced Science, Engineering and Medicine 2013, 5 (1), 37–45. 10.1166/asem.2013.1214. DOI
Diwoky C.; Liebmann D.; Neumayer B.; et al. Positive contrast of SPIO-labeled cells by off-resonant reconstruction of 3D radial half-echo bSSFP. NMR Biomed. 2015, 28 (1), 79–88. 10.1002/nbm.3229. PubMed DOI
Richards J. M.; Shaw C. A.; Lang N. N.; et al. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circ Cardiovasc Imaging 2012, 5 (4), 509–17. 10.1161/CIRCIMAGING.112.972596. PubMed DOI
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine 2018, 13 (8), 929–952. 10.2217/nnm-2017-0320. PubMed DOI
Nune S. K.; Gunda P.; Thallapally P. K.; Lin Y.-Y.; Laird Forrest M.; Berkland C. J. Nanoparticles for biomedical imaging. Expert opinion on drug delivery 2009, 6 (11), 1175–1194. 10.1517/17425240903229031. PubMed DOI PMC
Bao Y.; Sherwood J.; Sun Z. Magnetic iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging. Journal of Materials Chemistry C 2018, 6 (6), 1280–1290. 10.1039/C7TC05854C. DOI
Li W.; Kaminski Schierle G. S.; Lei B.; Liu Y.; Kaminski C. F. Fluorescent Nanoparticles for Super-Resolution Imaging. Chem. Rev. 2022, 122 (15), 12495–12543. 10.1021/acs.chemrev.2c00050. PubMed DOI PMC
Cardellini J.; Balestri A.; Montis C.; Berti D. Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems. Pharmaceutics 2021, 13 (6), 861.10.3390/pharmaceutics13060861. PubMed DOI PMC
Hickey S. M.; Ung B.; Bader C.; et al. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells-Basel 2022, 11 (1), 35.10.3390/cells11010035. PubMed DOI PMC
Malatesta M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22 (23), 12789.10.3390/ijms222312789. PubMed DOI PMC
Andrian T.; Muela Y.; Delgado L.; Albertazzi L.; Pujals S. A super-resolution and transmission electron microscopy correlative approach to study intracellular trafficking of nanoparticles. Nanoscale 2023, 15 (35), 14615–14627. 10.1039/D3NR02838K. PubMed DOI
Cooley M.; Sarode A.; Hoore M.; Fedosov D. A.; Mitragotri S.; Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 2018, 10 (32), 15350–15364. 10.1039/C8NR04042G. PubMed DOI PMC
Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC
Nováková Z.; Foss C. A.; Copeland B. T.; et al. Novel monoclonal antibodies recognizing human prostate-specific membrane antigen (PSMA) as research and theranostic tools. Prostate 2017, 77 (7), 749–764. 10.1002/pros.23311. PubMed DOI PMC
Liatsou I.; Assefa B.; Liyanage W.; et al. Development and therapeutic evaluation of 5D3(CC-MLN8237)(3.2) antibody-theranostic conjugates for PSMA-positive prostate cancer therapy. Front Pharmacol. 2024, 15, 1385598.10.3389/fphar.2024.1385598. PubMed DOI PMC
Blackman M. L.; Royzen M.; Fox J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518–9. 10.1021/ja8053805. PubMed DOI PMC
Adhikari K.; Vanermen M.; Da Silva G.; Van den Wyngaert T.; Augustyns K.; Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem. 2024, 9 (1), 47.10.1186/s41181-024-00275-x. PubMed DOI PMC
Tomarchio E. G.; Turnaturi R.; Saccullo E.; et al. Tetrazine-trans-cyclooctene ligation: Unveiling the chemistry and applications within the human body. Bioorg Chem. 2024, 150, 10757310.1016/j.bioorg.2024.107573. PubMed DOI
Huang C. T.; Guo X.; Barinka C.; et al. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol. Pharmaceutics 2020, 17 (9), 3392–3402. 10.1021/acs.molpharmaceut.0c00457. PubMed DOI PMC
Chauhan V. P.; Stylianopoulos T.; Martin J. D.; et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 2012, 7 (6), 383–8. 10.1038/nnano.2012.45. PubMed DOI PMC
Nakamura Y.; Mochida A.; Choyke P. L.; Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?. Bioconjug Chem. 2016, 27 (10), 2225–2238. 10.1021/acs.bioconjchem.6b00437. PubMed DOI PMC
Simon G. H.; Bauer J.; Saborovski O.; et al. T1 and T2 relaxivity of intracellular and extracellular uSPIO at 1.5T and 3T clinical MR scanning. Eur. Radiol. 2006, 16 (3), 738–45. 10.1007/s00330-005-0031-2. PubMed DOI