Mechanical Properties of Porous Structures for Dental Implants: Experimental Study and Computational Homogenization

. 2021 Aug 16 ; 14 (16) : . [epub] 20210816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34443120

A combined experimental and numerical study on titanium porous microstructures intended to interface the bone tissue and the solid homogeneous part of a modern dental implant is presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations associated with the application of the adopted selective laser melting technology to small microstructures with a pore size of 500 μm are first examined experimentally. The measured effective elastic properties of trabecular structures made of Ti6Al4V material support the computational framework based on homogenization with the difference between the measured and predicted Young's moduli of the Dode Thick structure being less than 5%. In this regard, the extended finite element method is promoted, particularly in light of the complex sheet gyroid studied next. While for plastic material-based structures a close match between experiments and simulations was observed, an order of magnitude difference was encountered for titanium specimens. This calls for further study and we expect to reconcile this inconsistency with the help of computational microtomography.

Zobrazit více v PubMed

Řehounek L., Denk F., Jíra A. Geometrical optimization of dental implants with regard to osseointegration. Acta Polytech. CTU Proc. 2017;13:97–101. doi: 10.14311/APP.2017.13.0097. DOI

Geetha M., Singh A.K., Asokamani R., Gogi A.K. Ti based biomaterials, the ultimate choice for orthopaedicimplants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Ridzwan M., Solehuddin S., Hassan A., Shokri A., Mohamad Ibrahim M. Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. J. Med. Sci. 2007;7:460–467. doi: 10.3923/jms.2007.460.467. DOI

Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998;31:909–917. doi: 10.1016/S0021-9290(98)00096-7. PubMed DOI

Huiskes R., Weinans H., van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 1992;274:124–134. doi: 10.1097/00003086-199201000-00014. PubMed DOI

Yan C., Hao L., Hussein A., Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024. PubMed DOI

Narra N., Valášek J., Hannula M., Marcián P., Sándor G., Hyttinen J., Wolff J. Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. J. Biomech. 2014;47:264–268. doi: 10.1016/j.jbiomech.2013.11.016. PubMed DOI

Levadnyi I., Awrejcewicz J., Gubaua J., Pereira J. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs. Clin. Biomech. 2017;50:122–129. doi: 10.1016/j.clinbiomech.2017.10.015. PubMed DOI

Yang E., Leary M., Lozanovski B., Downing D., Mazur M., Sarker A., Khorasani A., Jones A., Maconachie T., Bateman S., et al. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Mater. Des. 2019;184:108165. doi: 10.1016/j.matdes.2019.108165. DOI

Szymczyk P., Hoppe V., Ziólkowski G., Smolnicki M., Madeja M. The effect of geometry on mechanical properties of Ti6Al4V ELI scaffolds manufactured using additive manufacturing technology. Arch. Civ. Mech. Eng. 2020;20:1–13. doi: 10.1007/s43452-020-0011-y. DOI

Gawronska E., Dyja R. A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials. 2021;14:427. doi: 10.3390/ma14020427. PubMed DOI PMC

Ran Q., Yang W., Hu Y., Shen X., Yu Y., Xiang Y., Cai K. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J. Mech. Behav. Biomed. Mater. 2018;84:1–11. doi: 10.1016/j.jmbbm.2018.04.010. PubMed DOI

Heinl P., Müller L., Körner C., Singer R.F., Müller F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536–1544. doi: 10.1016/j.actbio.2008.03.013. PubMed DOI

Yánez A., Herrera A., Martel O., Monopoli D., Afonso H. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications. Mater. Sci. Eng. C. 2016;68:445–448. doi: 10.1016/j.msec.2016.06.016. PubMed DOI

Mullen L., Stamp R. Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. Part B. 2009;89:20–29. doi: 10.1002/jbm.b.31219. PubMed DOI

Wally Z.J., Haque A.M., Feteira A., Claeyssens F., Goodall R., Reilly G.C. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. J. Mech. Behav. Biomed. Mater. 2019;90:20–29. doi: 10.1016/j.jmbbm.2018.08.047. PubMed DOI

Řehounek L., Jíra A. Numerical and mechanical analysis of a 3D-printed titanium trabecular dental implants. Acta Polytech. 2017;57:218–228. doi: 10.14311/AP.2017.57.0218. DOI

Jíra A., Hájková P., Řehounek L. EAN, 57th Conference on Experimental Stress Analysis. Česká Společnost pro Mechaniku; Praha, Czech Republic: 2019. Trabecular Structures as Efficient Surface of Dental Implants; pp. 169–174.

Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K.J. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. Part B. 2010;95:53–61. doi: 10.1002/jbm.b.31682. PubMed DOI

Taniguchi N., Fujibayashi S., Takemoto M., Sasaki K., Otsuki B., Nakamura T., Matsushita T., Kokubo T., Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C. 2016;59:690–701. doi: 10.1016/j.msec.2015.10.069. PubMed DOI

Bobyn J., Pilliar R., Cameron H., Weatherly G. The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone. Clin. Orthop. Relat. Res. 1980;150:263–270. doi: 10.1097/00003086-198007000-00045. PubMed DOI

Wang D., He G., Tian Y., Ren N., Ni J., Liu W., Zhang X. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration. J. Mater. Sci. Technol. 2020;44:160–170. doi: 10.1016/j.jmst.2019.10.026. DOI

Frosch K.H., Barvencik F., Viereck V., Lohmann C., Dresing K., Breme J., Brunner E., Stürmer K. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J. Biomed. Mater. Res. 2004;68:325–334. doi: 10.1002/jbm.a.20010. PubMed DOI

Van Bael S., Chai Y.C., Truscello S., Moesen M., Kerckhof G., Oosterwyck Van H., Krutha J.P., Schrootenc J. The Effect of Pore Geometry on the In Vitro Biological Behaviour of Human Periosteum-derived Cells Seeded on Selective Laser-melted Ti6Al4V Bone Scaffold. Acta Biomater. 2012;8:2824–2834. doi: 10.1016/j.actbio.2012.04.001. PubMed DOI

Marcián P., Borák L., Valášek J., Kaiser J., Florian Z., Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone—A feasibility study. J. Biomech. 2014;47:3830–3836. doi: 10.1016/j.jbiomech.2014.10.019. PubMed DOI

Marcián P., Wolff J., Horáčková L., Kaiser J., Zikmund T., Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput. Biol. Med. 2018;96:157–165. doi: 10.1016/j.compbiomed.2018.03.012. PubMed DOI

Olivares A.L., Marsal É., Planell J.A., Lacroix D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials. 2009;30:6142–6149. doi: 10.1016/j.biomaterials.2009.07.041. PubMed DOI

Song K., Wang Z., Lan J., Ma S. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J. Mech. Behav. Biomed. Mater. 2021;115:1–9. doi: 10.1016/j.jmbbm.2020.104222. PubMed DOI

Jung Y., Chu K., Torquato S. A variational level set approach for surface area minimization of triply-periodic surfaces. J. Comput. Phys. 2007;223:711–730. doi: 10.1016/j.jcp.2006.10.007. DOI

Michel J.C., Moulinec H., Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng. 1999;172:109–143. doi: 10.1016/S0045-7825(98)00227-8. DOI

Fish J., Yu Q., Shek K. Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 1999;45:1657–1679. doi: 10.1002/(SICI)1097-0207(19990820)45:11<1657::AID-NME648>3.0.CO;2-H. DOI

Zeman J., Šejnoha M. Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. J. Mech. Phys. Solids. 2001;49:69–90. doi: 10.1016/S0022-5096(00)00027-2. DOI

Zeman J., Šejnoha M. From random microstructures to representative volume elements. Model. Simul. Mater. Sci. Eng. 2007;15:S325–S335. doi: 10.1088/0965-0393/15/4/S01. DOI

Šejnoha M., Zeman J. Micromechanics in Practice. WIT Press; Southampton, UK: Boston, MA, USA: 2013.

Fish J., Shek K. Multiscale Analysis of Large-Scale Nonlinear Structures and Materials. Int. J. Comput. Civ. Struct. Eng. 2000;1:79–90.

Kouznetsova V., Brekelmans W.A.M., Baaijens P.T. An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 2001;27:37–48. doi: 10.1007/s004660000212. DOI

Kouznetsova V., Geers M.G.D., Brekelmans W.A.M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 2002;54:1235–1260. doi: 10.1002/nme.541. DOI

Řehounek L., Hájková P., Vakrčka P., Jíra A. Geometry and mechanical properties of a 3D-printed titanium microstructure. Acta Polytech. CTU Proc. 2018;15:104–108. doi: 10.14311/APP.2018.15.0104. DOI

Oliver W., Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Němeček J., Králík V., Vondřejc J., Němečková J. Identification of micromechanical properties on metal foams using nanoindentation. In: Topping B., Tsompanakis Y., editors. Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press; Stirling, UK: 2011. On CD ROM, Paper No. 125. DOI

Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI

Li D., Liao W., Dai N., Dong G., Tang Y., Xie Y.M. Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Comput. Aided Des. 2018;104:87–99. doi: 10.1016/j.cad.2018.06.003. DOI

Dolan J.A., Wilts B.D., Vignolini S., Baumberg J.J., Steiner U., Wilkinson T.D. Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials. Adv. Opt. Mater. 2015;3:12–32. doi: 10.1002/adom.201400333. DOI

ISO 13314 . Mechanical Testing of Metals, Ductility Testing, Compression Test for Porous and Cellular Metals. International Organization for Standardization; Geneva, Switzerland: 2011.

Teplý J.L., Dvorak G.J. Bound on overall instantaneous properties of elastic-plastic composites. J. Mech. Phys. Solids. 1988;36:29–58. doi: 10.1016/0022-5096(88)90019-1. DOI

Larsson F., Runesson K., Su F. Variationally consistent computational homogenization of transient heat flow. Int. J. Numer. Methods Eng. 2010;81:1659–1686. doi: 10.1002/nme.2747. DOI

Terada K., Hori M., Kyoya T., Kikuchi N. Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 2000;37:2285–2311. doi: 10.1016/S0020-7683(98)00341-2. DOI

Moës N., Cloirec M., Cartraud P., Remacle J.F. A computational approach to handle complex microstructure geometries. Comput. Meth. Appl. Mech. Eng. 2003;192:3163–3177. doi: 10.1016/S0045-7825(03)00346-3. DOI

Vorel J., Grippon E., Šejnoha M. Effective thermoelastic properties of polysiloxane matrix-based plain weave textile composites. Int. J. Multiscale Comput. Eng. 2014;13:181–200. doi: 10.1615/IntJMultCompEng.2014011020. DOI

He Y., Burkhalter D., Durocher D., Gilbert J.M. Frontiers in Biomedical Devices. Volume 40789. American Society of Mechanical Engineers; New York, NY, USA: 2018. Solid-lattice hip prosthesis design: Applying topology and lattice optimization to reduce stress shielding from hip implants. DOI

Aimar A., Palermo A., Innocenti B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng. 2019;2019:5340616. doi: 10.1155/2019/5340616. PubMed DOI PMC

Shahrubudin N., Koshy P., Alipal J., Kadir M., Lee T. Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms. Heliyon. 2020;6:e03734. doi: 10.1016/j.heliyon.2020.e03734. PubMed DOI PMC

Drucker D.C. Thoughts on the present and future interrelation of theoretical and experimental mechanics. Exp. Mech. 1968;8:97–106. doi: 10.1007/BF02326103. DOI

Rammohan A.V., Lee T., Tan V. A Novel Morphological Model of Trabecular Bone Based on the Gyroid. Int. J. Appl. Mech. 2015;7:1550048. doi: 10.1142/S1758825115500489. DOI

Babuška I., Melenk J.M. The partition of unity method. Int. J. Numer. Methods Eng. 1997;40:727–758. doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N. DOI

Fíla T., Jiroušek O., Jung A., Kumpová I. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading. J. Instrum. 2016;11:C11017. doi: 10.1088/1748-0221/11/11/C11017. DOI

Jiroušek O., Doktor T., Kytýyř D., Zlámal P., Fíla T., Koudelka P., Jandejsek I., Vavřík D. X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading. J. Instrum. 2013;8:C02012. doi: 10.1088/1748-0221/8/02/C02012. DOI

Arabnejad S., Johnston B., Tanzer M., Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017;35:1774–1783. doi: 10.1002/jor.23445. PubMed DOI

Abueidda D.W., Elhebeary M., Shiang C.S.A., Pang S., Abu Al-Rub R.K., Jasiuk I.M. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater. Des. 2019;165:107597. doi: 10.1016/j.matdes.2019.107597. DOI

Yánez A., Cuadrado A., Martel O., Afonso H., Monopoli D. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Mater. Des. 2018;140:21–29. doi: 10.1016/j.matdes.2017.11.050. DOI

Pahr D., Zysset F. From high-resolution CT data to finite element models: Development of an integrated modular framework. Comput. Methods Biomech. Biomed. Eng. 2009;12:45–57. doi: 10.1080/10255840802144105. PubMed DOI

Vorel J., Sýkora J., Urbanová S., Šejnoha M. From CT scans of wood to finite element meshes. In: Topping B., editor. Proceedings of the the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing; Prague, Czech Republic. 1–4 September 2015; Stirling, UK: Civil-Comp Press; 2015. DOI

Knauss W.G. Perspectives in experimental solid mechanics. Int. J. Solids Struct. 2000;37:251–266. doi: 10.1016/S0020-7683(99)00092-X. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...