Mechanical Properties of Porous Structures for Dental Implants: Experimental Study and Computational Homogenization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34443120
PubMed Central
PMC8398312
DOI
10.3390/ma14164592
PII: ma14164592
Knihovny.cz E-zdroje
- Klíčová slova
- FEM, X-FEM, dental implant, homogenization, mechanical properties, porous material, selective laser melting, titanium trabecular and gyroid structures,
- Publikační typ
- časopisecké články MeSH
A combined experimental and numerical study on titanium porous microstructures intended to interface the bone tissue and the solid homogeneous part of a modern dental implant is presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations associated with the application of the adopted selective laser melting technology to small microstructures with a pore size of 500 μm are first examined experimentally. The measured effective elastic properties of trabecular structures made of Ti6Al4V material support the computational framework based on homogenization with the difference between the measured and predicted Young's moduli of the Dode Thick structure being less than 5%. In this regard, the extended finite element method is promoted, particularly in light of the complex sheet gyroid studied next. While for plastic material-based structures a close match between experiments and simulations was observed, an order of magnitude difference was encountered for titanium specimens. This calls for further study and we expect to reconcile this inconsistency with the help of computational microtomography.
High Technical School of Architecture University of Seville 41012 Sevilla Spain
Instituto de Matemáticas de la Universidad de Sevilla University of Seville 41012 Sevilla Spain
Zobrazit více v PubMed
Řehounek L., Denk F., Jíra A. Geometrical optimization of dental implants with regard to osseointegration. Acta Polytech. CTU Proc. 2017;13:97–101. doi: 10.14311/APP.2017.13.0097. DOI
Geetha M., Singh A.K., Asokamani R., Gogi A.K. Ti based biomaterials, the ultimate choice for orthopaedicimplants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Ridzwan M., Solehuddin S., Hassan A., Shokri A., Mohamad Ibrahim M. Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. J. Med. Sci. 2007;7:460–467. doi: 10.3923/jms.2007.460.467. DOI
Sumner D.R., Turner T.M., Igloria R., Urban R.M., Galante J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998;31:909–917. doi: 10.1016/S0021-9290(98)00096-7. PubMed DOI
Huiskes R., Weinans H., van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 1992;274:124–134. doi: 10.1097/00003086-199201000-00014. PubMed DOI
Yan C., Hao L., Hussein A., Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015;51:61–73. doi: 10.1016/j.jmbbm.2015.06.024. PubMed DOI
Narra N., Valášek J., Hannula M., Marcián P., Sándor G., Hyttinen J., Wolff J. Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. J. Biomech. 2014;47:264–268. doi: 10.1016/j.jbiomech.2013.11.016. PubMed DOI
Levadnyi I., Awrejcewicz J., Gubaua J., Pereira J. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs. Clin. Biomech. 2017;50:122–129. doi: 10.1016/j.clinbiomech.2017.10.015. PubMed DOI
Yang E., Leary M., Lozanovski B., Downing D., Mazur M., Sarker A., Khorasani A., Jones A., Maconachie T., Bateman S., et al. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Mater. Des. 2019;184:108165. doi: 10.1016/j.matdes.2019.108165. DOI
Szymczyk P., Hoppe V., Ziólkowski G., Smolnicki M., Madeja M. The effect of geometry on mechanical properties of Ti6Al4V ELI scaffolds manufactured using additive manufacturing technology. Arch. Civ. Mech. Eng. 2020;20:1–13. doi: 10.1007/s43452-020-0011-y. DOI
Gawronska E., Dyja R. A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials. 2021;14:427. doi: 10.3390/ma14020427. PubMed DOI PMC
Ran Q., Yang W., Hu Y., Shen X., Yu Y., Xiang Y., Cai K. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J. Mech. Behav. Biomed. Mater. 2018;84:1–11. doi: 10.1016/j.jmbbm.2018.04.010. PubMed DOI
Heinl P., Müller L., Körner C., Singer R.F., Müller F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536–1544. doi: 10.1016/j.actbio.2008.03.013. PubMed DOI
Yánez A., Herrera A., Martel O., Monopoli D., Afonso H. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications. Mater. Sci. Eng. C. 2016;68:445–448. doi: 10.1016/j.msec.2016.06.016. PubMed DOI
Mullen L., Stamp R. Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. Part B. 2009;89:20–29. doi: 10.1002/jbm.b.31219. PubMed DOI
Wally Z.J., Haque A.M., Feteira A., Claeyssens F., Goodall R., Reilly G.C. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. J. Mech. Behav. Biomed. Mater. 2019;90:20–29. doi: 10.1016/j.jmbbm.2018.08.047. PubMed DOI
Řehounek L., Jíra A. Numerical and mechanical analysis of a 3D-printed titanium trabecular dental implants. Acta Polytech. 2017;57:218–228. doi: 10.14311/AP.2017.57.0218. DOI
Jíra A., Hájková P., Řehounek L. EAN, 57th Conference on Experimental Stress Analysis. Česká Společnost pro Mechaniku; Praha, Czech Republic: 2019. Trabecular Structures as Efficient Surface of Dental Implants; pp. 169–174.
Dabrowski B., Swieszkowski W., Godlinski D., Kurzydlowski K.J. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. Part B. 2010;95:53–61. doi: 10.1002/jbm.b.31682. PubMed DOI
Taniguchi N., Fujibayashi S., Takemoto M., Sasaki K., Otsuki B., Nakamura T., Matsushita T., Kokubo T., Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C. 2016;59:690–701. doi: 10.1016/j.msec.2015.10.069. PubMed DOI
Bobyn J., Pilliar R., Cameron H., Weatherly G. The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone. Clin. Orthop. Relat. Res. 1980;150:263–270. doi: 10.1097/00003086-198007000-00045. PubMed DOI
Wang D., He G., Tian Y., Ren N., Ni J., Liu W., Zhang X. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration. J. Mater. Sci. Technol. 2020;44:160–170. doi: 10.1016/j.jmst.2019.10.026. DOI
Frosch K.H., Barvencik F., Viereck V., Lohmann C., Dresing K., Breme J., Brunner E., Stürmer K. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J. Biomed. Mater. Res. 2004;68:325–334. doi: 10.1002/jbm.a.20010. PubMed DOI
Van Bael S., Chai Y.C., Truscello S., Moesen M., Kerckhof G., Oosterwyck Van H., Krutha J.P., Schrootenc J. The Effect of Pore Geometry on the In Vitro Biological Behaviour of Human Periosteum-derived Cells Seeded on Selective Laser-melted Ti6Al4V Bone Scaffold. Acta Biomater. 2012;8:2824–2834. doi: 10.1016/j.actbio.2012.04.001. PubMed DOI
Marcián P., Borák L., Valášek J., Kaiser J., Florian Z., Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone—A feasibility study. J. Biomech. 2014;47:3830–3836. doi: 10.1016/j.jbiomech.2014.10.019. PubMed DOI
Marcián P., Wolff J., Horáčková L., Kaiser J., Zikmund T., Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput. Biol. Med. 2018;96:157–165. doi: 10.1016/j.compbiomed.2018.03.012. PubMed DOI
Olivares A.L., Marsal É., Planell J.A., Lacroix D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials. 2009;30:6142–6149. doi: 10.1016/j.biomaterials.2009.07.041. PubMed DOI
Song K., Wang Z., Lan J., Ma S. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J. Mech. Behav. Biomed. Mater. 2021;115:1–9. doi: 10.1016/j.jmbbm.2020.104222. PubMed DOI
Jung Y., Chu K., Torquato S. A variational level set approach for surface area minimization of triply-periodic surfaces. J. Comput. Phys. 2007;223:711–730. doi: 10.1016/j.jcp.2006.10.007. DOI
Michel J.C., Moulinec H., Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng. 1999;172:109–143. doi: 10.1016/S0045-7825(98)00227-8. DOI
Fish J., Yu Q., Shek K. Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 1999;45:1657–1679. doi: 10.1002/(SICI)1097-0207(19990820)45:11<1657::AID-NME648>3.0.CO;2-H. DOI
Zeman J., Šejnoha M. Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. J. Mech. Phys. Solids. 2001;49:69–90. doi: 10.1016/S0022-5096(00)00027-2. DOI
Zeman J., Šejnoha M. From random microstructures to representative volume elements. Model. Simul. Mater. Sci. Eng. 2007;15:S325–S335. doi: 10.1088/0965-0393/15/4/S01. DOI
Šejnoha M., Zeman J. Micromechanics in Practice. WIT Press; Southampton, UK: Boston, MA, USA: 2013.
Fish J., Shek K. Multiscale Analysis of Large-Scale Nonlinear Structures and Materials. Int. J. Comput. Civ. Struct. Eng. 2000;1:79–90.
Kouznetsova V., Brekelmans W.A.M., Baaijens P.T. An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 2001;27:37–48. doi: 10.1007/s004660000212. DOI
Kouznetsova V., Geers M.G.D., Brekelmans W.A.M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 2002;54:1235–1260. doi: 10.1002/nme.541. DOI
Řehounek L., Hájková P., Vakrčka P., Jíra A. Geometry and mechanical properties of a 3D-printed titanium microstructure. Acta Polytech. CTU Proc. 2018;15:104–108. doi: 10.14311/APP.2018.15.0104. DOI
Oliver W., Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Němeček J., Králík V., Vondřejc J., Němečková J. Identification of micromechanical properties on metal foams using nanoindentation. In: Topping B., Tsompanakis Y., editors. Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press; Stirling, UK: 2011. On CD ROM, Paper No. 125. DOI
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236. doi: 10.1016/S0921-5093(97)00806-X. DOI
Li D., Liao W., Dai N., Dong G., Tang Y., Xie Y.M. Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Comput. Aided Des. 2018;104:87–99. doi: 10.1016/j.cad.2018.06.003. DOI
Dolan J.A., Wilts B.D., Vignolini S., Baumberg J.J., Steiner U., Wilkinson T.D. Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials. Adv. Opt. Mater. 2015;3:12–32. doi: 10.1002/adom.201400333. DOI
ISO 13314 . Mechanical Testing of Metals, Ductility Testing, Compression Test for Porous and Cellular Metals. International Organization for Standardization; Geneva, Switzerland: 2011.
Teplý J.L., Dvorak G.J. Bound on overall instantaneous properties of elastic-plastic composites. J. Mech. Phys. Solids. 1988;36:29–58. doi: 10.1016/0022-5096(88)90019-1. DOI
Larsson F., Runesson K., Su F. Variationally consistent computational homogenization of transient heat flow. Int. J. Numer. Methods Eng. 2010;81:1659–1686. doi: 10.1002/nme.2747. DOI
Terada K., Hori M., Kyoya T., Kikuchi N. Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 2000;37:2285–2311. doi: 10.1016/S0020-7683(98)00341-2. DOI
Moës N., Cloirec M., Cartraud P., Remacle J.F. A computational approach to handle complex microstructure geometries. Comput. Meth. Appl. Mech. Eng. 2003;192:3163–3177. doi: 10.1016/S0045-7825(03)00346-3. DOI
Vorel J., Grippon E., Šejnoha M. Effective thermoelastic properties of polysiloxane matrix-based plain weave textile composites. Int. J. Multiscale Comput. Eng. 2014;13:181–200. doi: 10.1615/IntJMultCompEng.2014011020. DOI
He Y., Burkhalter D., Durocher D., Gilbert J.M. Frontiers in Biomedical Devices. Volume 40789. American Society of Mechanical Engineers; New York, NY, USA: 2018. Solid-lattice hip prosthesis design: Applying topology and lattice optimization to reduce stress shielding from hip implants. DOI
Aimar A., Palermo A., Innocenti B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng. 2019;2019:5340616. doi: 10.1155/2019/5340616. PubMed DOI PMC
Shahrubudin N., Koshy P., Alipal J., Kadir M., Lee T. Challenges of 3D printing technology for manufacturing biomedical products: A case study of Malaysian manufacturing firms. Heliyon. 2020;6:e03734. doi: 10.1016/j.heliyon.2020.e03734. PubMed DOI PMC
Drucker D.C. Thoughts on the present and future interrelation of theoretical and experimental mechanics. Exp. Mech. 1968;8:97–106. doi: 10.1007/BF02326103. DOI
Rammohan A.V., Lee T., Tan V. A Novel Morphological Model of Trabecular Bone Based on the Gyroid. Int. J. Appl. Mech. 2015;7:1550048. doi: 10.1142/S1758825115500489. DOI
Babuška I., Melenk J.M. The partition of unity method. Int. J. Numer. Methods Eng. 1997;40:727–758. doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N. DOI
Fíla T., Jiroušek O., Jung A., Kumpová I. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading. J. Instrum. 2016;11:C11017. doi: 10.1088/1748-0221/11/11/C11017. DOI
Jiroušek O., Doktor T., Kytýyř D., Zlámal P., Fíla T., Koudelka P., Jandejsek I., Vavřík D. X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading. J. Instrum. 2013;8:C02012. doi: 10.1088/1748-0221/8/02/C02012. DOI
Arabnejad S., Johnston B., Tanzer M., Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017;35:1774–1783. doi: 10.1002/jor.23445. PubMed DOI
Abueidda D.W., Elhebeary M., Shiang C.S.A., Pang S., Abu Al-Rub R.K., Jasiuk I.M. Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Mater. Des. 2019;165:107597. doi: 10.1016/j.matdes.2019.107597. DOI
Yánez A., Cuadrado A., Martel O., Afonso H., Monopoli D. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Mater. Des. 2018;140:21–29. doi: 10.1016/j.matdes.2017.11.050. DOI
Pahr D., Zysset F. From high-resolution CT data to finite element models: Development of an integrated modular framework. Comput. Methods Biomech. Biomed. Eng. 2009;12:45–57. doi: 10.1080/10255840802144105. PubMed DOI
Vorel J., Sýkora J., Urbanová S., Šejnoha M. From CT scans of wood to finite element meshes. In: Topping B., editor. Proceedings of the the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing; Prague, Czech Republic. 1–4 September 2015; Stirling, UK: Civil-Comp Press; 2015. DOI
Knauss W.G. Perspectives in experimental solid mechanics. Int. J. Solids Struct. 2000;37:251–266. doi: 10.1016/S0020-7683(99)00092-X. DOI