Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MZE-RO1722
Ministry of Agriculture of the Czech Republic
PubMed
36499826
PubMed Central
PMC9735557
DOI
10.3390/ma15238331
PII: ma15238331
Knihovny.cz E-resources
- Keywords
- amendments, metal immobilization, risk minimization, soil contamination,
- Publication type
- Journal Article MeSH
Growing awareness of the risks posed by pollution of the soil environment is leading to the development of new remediation strategies. The technique of aided phytostabilization, which involves the evaluation of new heavy-metal (HM)-immobilizing amendments, together with appropriately selected plant species, is a challenge for environmental protection and remediation of the soil environment, and seems to be promising. In this study, the suitability of bentonite for the technique of aided phytostabilization of soils contaminated with high HM concentrations was determined, using a mixture of two grass species. The HM contents in the tested plants and in the soil were determined by flame atomic absorption spectrometry. The application of bentonite had a positive effect on the biomass of the tested plants, and resulted in an increase in soil pH. The concentrations of copper, nickel, cadmium, lead and chromium were higher in the roots than in the above-ground parts of the plants, especially when bentonite was applied to the soil. The addition of the analyzed soil additive contributed significantly to a decrease in the levels of zinc, copper, cadmium and nickel in the soil at the end of the experiment. In view of the above, it can be concluded that the use of bentonite in the aided phytostabilization of soils polluted with HMs, is appropriate.
Agricultural Research Ltd Zahradni 1 664 41 Troubsko Czech Republic
Faculty of Geoengineering University of Warmia and Mazury in Olsztyn 10 719 Olsztyn Poland
Institute of Environmental Engineering Warsaw University of Life Sciences 02 787 Warsaw Poland
See more in PubMed
Díaz-Morales D.M., Erasmus J.H., Bosch S., Nachev M., Smit N.J., Zimmermann S., Wepener V., Sures B. Metal contamination and toxicity of soils and river sediments from the world’s largest platinum mining area. Environ. Pollut. 2021;286:117284. doi: 10.1016/j.envpol.2021.117284. PubMed DOI
Luo Y., Yuan H., Zhao J., Qi Y., Cao W.W., Liu J.M., Guo W., Bao Z.H. Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. Ecotoxicol. Environ. Saf. 2021;225:112749. doi: 10.1016/j.ecoenv.2021.112749. PubMed DOI
Radziemska M., Gusiatin Z.M., Cydzik-Kwiatkowska A., Cerdà A., Pecina V., Bęś A., Datta R., Majewski G., Mazur Z., Dzięcioł J., et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021;272:129576. doi: 10.1016/j.chemosphere.2021.129576. PubMed DOI
Panagos P., Van Liedekerke M., Yigini Y., Montanarella L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Health. 2013;2013:158764. doi: 10.1155/2013/158764. PubMed DOI PMC
Boente C., Baragaño D., Gallego J.R. Benzo [a] pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environ. Pollut. 2020;266:115341. doi: 10.1016/j.envpol.2020.115341. PubMed DOI
European Environment Agency . The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. 1st ed. European Environment Agency; Luxembourg: 2019.
Agency for Toxic Substances and Disease Registry Substance Priority List. [(accessed on 16 November 2022)]; Available online: https://www.atsdr.cdc.gov/spl/index.html#2019spl.
Boente C., Gerassis S., Albuquerque M.T.D., Taboada J., Gallego J.R. Local versus regional soil screening levels to identify potentially polluted areas. Math. Geosci. 2020;52:381–396. doi: 10.1007/s11004-019-09792-x. DOI
Yan X., An J., Yin Y., Gao C., Wang B., Wei S. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci. Total Environ. 2022;803:149871. doi: 10.1016/j.scitotenv.2021.149871. PubMed DOI
Thakur M., Praveen S., Divte P.R., Mitra R., Kumar M., Gupta C.K., Kalidindi U., Bansal R., Roy S., Anand A., et al. Metal tolerance in plants: Molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere. 2022;287:131957. doi: 10.1016/j.chemosphere.2021.131957. PubMed DOI
Lu X., Yamaji K., Haruma T., Yachi M., Doyama K., Tomiyama S. Metal Accumulation and Tolerance in Artemisia indica var. maximowiczii (Nakai) H. Hara. and Fallopia sachalinensis (F. Schmidt) Ronse Decr., a Naturally Growing Plant Species at Mine Site. Minerals. 2021;11:806. doi: 10.3390/min11080806. DOI
Chen Z.J., Tian W., Li Y.J., Sun L.N., Chen Y., Zhang H., Li Y.Y., Han H. Responses of rhizosphere bacterial communities, their functions and their network interactions to Cd stress under phytostabilization by Miscanthus spp. Environ. Pollut. 2021;287:117663. doi: 10.1016/j.envpol.2021.117663. PubMed DOI
Peco J.D., Higueras P., Campos J.A., Esbrí J.M., Moreno M.M., Battaglia-Brunet F., Sandalio L.M. Abandoned Mine Lands Reclamation by Plant Remediation Technologies. Sustainability. 2021;13:6555. doi: 10.3390/su13126555. DOI
Mazur Z., Radziemska M., Fronczyk J., Jeznach J. Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fres. Environ. Bull. 2015;24:216–223.
Labidi S., Firmin S., Verdin A., Bidar G., Laruelle F., Douay F., Shirali P., Fontaine J., Sahraoui A.L.H. Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: A long-term field experiment. Ecotoxicol. Environ. Saf. 2017;138:190–198. doi: 10.1016/j.ecoenv.2016.12.027. PubMed DOI
Burges A., Epelde L., Benito G., Artetxe U., Becerril J.M., Garbisu C. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci. Total Environ. 2016;562:480–492. doi: 10.1016/j.scitotenv.2016.04.080. PubMed DOI
Scattolin M., Peuble S., Pereira F., Paran F., Moutte J., Menad N., Faure O. Aided-phytostabilization of steel slag dumps: The key-role of pH adjustment in decreasing chromium toxicity and improving manganese, phosphorus and zinc phytoavailability. J. Hazard. Mater. 2021;405:124225. doi: 10.1016/j.jhazmat.2020.124225. PubMed DOI
Lee S.H., Ji W.H., Lee W.S., Koo N., Koh I.H., Kim M.S., Park J.S. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J. Environ. Manag. 2014;139:15–21. doi: 10.1016/j.jenvman.2014.02.019. PubMed DOI
Maanoja S., Palmroth M., Salminen L., Lehtinen L., Kokko M., Lakaniemi A.M., Auvinen H., Kiczka M., Muuri E., Rintala J. The effect of compaction and microbial activity on the quantity and release rate of water-soluble organic matter from bentonites. Appl. Clay Sci. 2021;211:106192. doi: 10.1016/j.clay.2021.106192. DOI
Laufek F., Hanusová I., Svoboda J., Vašíček R., Najser J., Koubová M., Čurda M., Pticen F., Vaculíková L., Sun H., et al. Mineralogical, geochemical and geotechnical study of BCV 2017 bentonite—The initial state and the state following thermal treatment at 200 °C. Minerals. 2021;11:871. doi: 10.3390/min11080871. DOI
Bobrowska M., Szaniawska D. Badania modyfikacji bentonitów do zastosowań w ochronie środowiska. Inż. Ap. Chem. 2011;50:20–21. (In Polish)
Natkański P., Białas A., Kuśtrowski P. Synteza kompozytów poli(kwas akrylowy)-bentonit oraz poliakryloamid-bentonit do zastosowań adsorpcyjnych. Chemik. 2012;66:742–749. (In Polish)
Kobus J. Wpływ nawożenia gleby piaskowej luźnej kaolinitem i bentonitem na plon roślin zbożowych i zawartość w nich niektórych składników mineralnych. Rocz. Glebozn. 1983;xxxiv:181–199. (In Polish)
Rolka E. The yields of selected crops on soils contaminated by cadmium and supplied neutralizing substances. Zesz. Probl. Postępów Nauk. Rol. 2014;576:99–100.
Mi J., Gregorich E.G., Xu S., McLaughlin N.B., Liu J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020;10:18282. doi: 10.1038/s41598-020-75350-9. PubMed DOI PMC
Mi J., Gregorich E.G., Xu S., McLaughlin N.B., Ma B., Liu J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021;102:103251. doi: 10.1016/j.ejsobi.2020.103251. DOI
Elmorsi R.R., Mostafa G.A.H., Abou-El-Sherbini K.S. Homoionic soda-activated bentonite for batch-mode removal of Pb(II) from polluted brackish water. J. Environ. Chem. Eng. 2021;9:104606. doi: 10.1016/j.jece.2020.104606. DOI
Awasthi M.K., Awasthi S.K., Wang Q., Awasthi M.K., Zhao J., Chen H., Ren X., Wang M., Zhang Z. Role of Ca-bentonite to improve the humification, enzymatic activities, nutrient transformation and end product quality during sewage sludge composting. Bioresour. Technol. 2018;262:80–89. doi: 10.1016/j.biortech.2018.04.023. PubMed DOI
Ordinance of the Minister of Environment on soil and ground quality standards. J. Law. 2016;395:1–86.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019.
Pérez-Esteban J., Escolástico C., Masaguer A., Vargas C., Moliner A. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere. 2014;103:164–171. doi: 10.1016/j.chemosphere.2013.11.055. PubMed DOI
Raza S., Zamanian K., Ullah S., Kuzyakov Y., Virto I., Zhou J. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J. Clean. Prod. 2021;315:128036. doi: 10.1016/j.jclepro.2021.128036. DOI
Anza M., Garbisu C., Salazar O., Epelde L., Alkorta I., Martínez-Santos M. Acidification alters the functionality of metal polluted soils. Appl. Soil Ecol. 2021;163:103920. doi: 10.1016/j.apsoil.2021.103920. DOI
Tahervand S., Jalali M. Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH. J. Geochem. Explor. 2017;181:148–159. doi: 10.1016/j.gexplo.2017.07.005. DOI
Tong H., Chen M., Lv Y., Liu C., Zheng C., Xia Y. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. Environ. Geochem. Health. 2021;43:1305–1317. doi: 10.1007/s10653-020-00725-w. PubMed DOI
Zhang D., Ding A., Li T., Wu X., Liu Y., Naidu R. Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. J. Soils Sediments. 2021;21:2262–2272. doi: 10.1007/s11368-021-02928-9. DOI
Hamidpour M., Kalbasi M., Afyuni M., Shariatmadari H., Holm P.E., Hansen G.C.B. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. J. Hazard. Mater. 2010;181:686–691. doi: 10.1016/j.jhazmat.2010.05.067. PubMed DOI
Sun Y., Li Y., Xu Y., Liang X., Wang L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci. 2015;105–106:200–206. doi: 10.1016/j.clay.2014.12.031. DOI
Vrînceanu N.O., Motelică D.M., Dumitru M., Calciu I., Tănase V., Preda M. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania) Catena. 2019;176:336–342. doi: 10.1016/j.catena.2019.01.015. DOI
Zine H., Midhat L., Hakkou R., Adnani M., Ouhammou A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020;10:e00654. doi: 10.1016/j.sciaf.2020.e00654. DOI
Datta R., Holatko J., Latal O., Hammerschmiedt T., Elbl J., Pecina V., Kintl A., Balakova L., Radziemska M., Baltazar T., et al. Bentonite-Based Organic Amendment Enriches Microbial Activity in Agricultural Soils. Land. 2020;9:258. doi: 10.3390/land9080258. DOI
Hermida L., Agustian J. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ. Technol. Innov. 2019;13:113–121. doi: 10.1016/j.eti.2018.11.005. DOI
Sarkar A., Biswas D.R., Datta S.C., Dwivedi B.S., Bhattacharyya R., Kumar R., Bandyopadhyay K.K., Saha M., Chawla G., Saha J.K., et al. Preparation of novel biodegradable starch/poly(vinyl alcohol)/bentonite grafted polymeric films for fertilizer encapsulation. Carbohydr. Polym. 2021;259:117679. doi: 10.1016/j.carbpol.2021.117679. PubMed DOI
Pérez-de-Mora A., Madrid F., Cabrera F., Madejón E. Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma. 2007;139:1–10. doi: 10.1016/j.geoderma.2006.12.001. DOI
Massenet A., Bonet A., Laur J., Labrecque M. Co-planting Brassica napus and Salix nigra as a phytomanagement alternative for copper contaminated soil. Chemosphere. 2021;279:130517. doi: 10.1016/j.chemosphere.2021.130517. PubMed DOI
Morosini C., Terzaghi E., Raspa G., Zanardini E., Anelli S., Armiraglio S., Petranich E., Covelli S.M., Guardo A. Mercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: Role of soil properties, chemical loading, and cultivated plant species in driving its mobility. Environ. Pollut. 2021;285:117467. doi: 10.1016/j.envpol.2021.117467. PubMed DOI
Youssef S.B.D. Effect of bentonite and zeolite ores on potato crop (Solanum tuberosum L.) under north Sinai conditions. J. Plant Prod. 2013;4:1843–1856. doi: 10.21608/jpp.2013.75109. DOI
Wafaa M.T.E., Wagida Z.H. Effect of potassium humate and bentonite on some soil chemical properties under different rates of nitrogen fertilization. J. Soil Sci. Agric. Eng. 2017;8:539–544. doi: 10.21608/JSSAE.2017.38070. DOI
Zhou H., Zhou X., Zeng M., Liao B.H., Liu L., Yang W.T., Wu Y.M., Qiu Q.Y., Wang Y. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol. Environ. Saf. 2014;101:226–232. doi: 10.1016/j.ecoenv.2014.01.001. PubMed DOI
Roongtanakiat N., Chairoj P. Uptake potential of some heavy metals by vetiver grass. Kasetsart. J. Nat. Sci. 2001;35:46–50.
Mobility of Zn and Cu in Bentonites: Implications for Environmental Remediation