Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases vector
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24392167
PubMed Central
PMC3879210
DOI
10.1371/journal.pntd.0002597
PII: PNTD-D-13-00947
Knihovny.cz E-zdroje
- MeSH
- ELISA MeSH
- hmyzí proteiny * genetika MeSH
- imunoblotting MeSH
- kousnutí a bodnutí hmyzem diagnóza MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- Phlebotomus imunologie MeSH
- protilátky krev MeSH
- psi MeSH
- rekombinantní proteiny genetika MeSH
- sekvenční analýza DNA MeSH
- slinné proteiny a peptidy * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny * MeSH
- protilátky MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy * MeSH
BACKGROUND: Phlebotomus perniciosus is the main vector in the western Mediterranean area of the protozoan parasite Leishmania infantum, the causative agent of canine and human visceral leishmaniases. Infected dogs serve as a reservoir of the disease, and therefore measuring the exposure of dogs to sand fly bites is important for estimating the risk of L. infantum transmission. In bitten hosts, sand fly saliva elicits a specific antibody response that reflects the intensity of sand fly exposure. As screening of specific anti-saliva antibodies is limited by the availability of salivary gland homogenates, utilization of recombinant salivary proteins is a promising alternative. In this manuscript we show for the first time the use of recombinant salivary proteins as a functional tool for detecting P. perniciosus bites in dogs. METHODOLOGY/PRINCIPAL FINDINGS: The reactivity of six bacterially-expressed recombinant salivary proteins of P. perniciosus, yellow-related protein rSP03B, apyrases rSP01B and rSP01, antigen 5-related rSP07, ParSP25-like protein rSP08 and D7-related protein rSP04, were tested with sera of mice and dogs experimentally bitten by this sand fly using immunoblots and ELISA. In the immunoblots, both mice and canine sera gave positive reactions with yellow-related protein, both apyrases and ParSP25-like protein. A similar reaction for recombinant salivary proteins was observed by ELISA, with the reactivity of yellow-related protein and apyrases significantly correlated with the antibody response of mice and dogs against the whole salivary gland homogenate. CONCLUSIONS/SIGNIFICANCE: Three recombinant salivary antigens of P. perniciosus, yellow-related protein rSP03B and the apyrases rSP01B and rSP01, were identified as the best candidates for evaluating the exposure of mice and dogs to P. perniciosus bites. Utilization of these proteins, or their combination, would be beneficial for screening canine sera in endemic areas of visceral leishmaniases for vector exposure and for estimating the risk of L. infantum transmission in dogs.
Zobrazit více v PubMed
Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L (2008) Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 24: 324–30. PubMed
Schantz PM, Steurer FJ, Duprey ZH, Kurpel KP, Barr SC, et al. (2005) Autochthonous visceral leishmaniasis in dogs in North America. J Am Vet Med Assoc 226: 1316–22. PubMed
Dujardin JC, Campino L, Canavate C, Dedet JP, Gradoni L, et al. (2008) Spread of vector-borne diseases and neglect of Leishmaniasis, Europe. Emerg Infect Dis 14: 1013–8. PubMed PMC
Carranza-Tamayo CO, Carvalho Mdo S, Bredt A, Bofil MI, Rodrigues RM, Silva AD, et al. (2010) Autochthonous visceral leishmaniasis in Brasilia, Federal District, Brazil. Rev Soc Bras Med Trop 43: 396–9. PubMed
Killick-Kendrick R (1999) The biology and control of phlebotomine sand flies. Clin Dermatol 17: 279–89. PubMed
Hostomska J, Rohousova I, Volfova V, Stanneck D, Mencke N, et al. (2008) Kinetics of canine antibody response to saliva of the sand fly Lutzomyia longipalpis. Vector Borne Zoonotic Dis 8: 443–50. PubMed
Vlkova M, Rohousova I, Drahota J, Stanneck D, Kruedewagen EM, et al. (2011) Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis 5: e1344. PubMed PMC
Gomes RB, Mendonca IL, Silva VC, Ruas J, Silva MB, et al. (2007) Antibodies against Lutzomyia longipalpis saliva in the fox Cerdocyon thousand the sylvatic cycle of Leishmania chagasi. Trans R Soc Trop Med Hyg 101: 127–33. PubMed
Vlkova M, Rohousova I, Hostomska J, Pohankova L, Zidkova L, et al. (2012) Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi. PLoS Negl Trop Dis 6: e1719. PubMed PMC
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, et al. (2010) Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral Leishmaniasis endemic areas. PLoS Negl Trop Dis 4: e649. PubMed PMC
Teixeira C, Gomes R, Collin N, Reynoso D, Jochim R, et al. (2010) Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis 4: e638. PubMed PMC
Martin-Martin I, Molina R, Jimenez M (2012) An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop 123: 22–30. PubMed
Volf P, Volfova V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9. PubMed
Molina R (1991) Laboratory adaptation of an autochthonous colony of Phlebotomus perniciosus Newstead, 1911(Diptera: Psychodidae). Research and Reviews in Parasitology 51: 87–89.
Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, et al. (2006) Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7: 52. PubMed PMC
Rohousova I, Ozensoy S, Ozbel Y, Volf P (2005) Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology 130: 493–9. PubMed
Drahota J, Lipoldova M, Volf P, Rohousova I (2009) Specificity of anti-saliva immune response in mice repeatedly bitten by Phlebotomus sergenti. Parasite Immunol 12: 766–70. PubMed
Ribeiro JM, Mans BJ, Arca B (2010) An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol 40: 767–84. PubMed PMC
Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, et al. (2006) From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24: 374–90. PubMed
Hostomska J, Volfova V, Mu J, Garfield M, Rohousova I, et al. (2009) Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus. BMC Genomics 10: 282. PubMed PMC
Rohousova I, Subrahmanyam S, Volfova V, Mu J, Volf P, Valenzuela JG, et al. (2012) Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis 6: e1660. PubMed PMC
Volf P, Skarupova S, Man P (2002) Characterization of the lectin from females of Phlebotomus duboscqi sand flies. Eur J Biochem 269: 6294–301. PubMed
Xu X, Oliveira F, Chang BW, Collin N, Gomes R, et al. (2011) Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem 286: 32383–93. PubMed PMC
Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC, et al. (2012) Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J Invest Dermatol 132: 2735–43. PubMed PMC
Martin-Martin I, Molina R, Jiménez M (2013) Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain. BioMed Research International 2013: 526069. PubMed PMC
Hamasaki Ryoichi, Kato Hirotomo, Terayama Yoshimi, Iwata Hiroyuki, Valenzuela Jesus G (2009) Functional characterization of a salivary apyrase from the sand fly, Phlebotomus duboscqi, a vector of Leishmania major. J Insect Physiol 55: 1044–1049. PubMed PMC
Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15: 19505. PubMed
Maroli M, Rossi L, Baldelli R, Capelli G, Ferroglio E, et al. (2008) The northward spread of leishmaniasis in Italy: evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop Med Int Health 13: 256–64. PubMed
Baron SD, Morillas-Marquez F, Morales-Yuste M, Diaz-Saez V, Irigaray C, et al. (2011) Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: implications for the control of the disease. Parasitology 138: 1234–44. PubMed
Hartemink N, Vanwambeke SO, Heesterbeek H, Rogers D, Morley D, et al. (2011) Integrated mapping of establishment risk for emerging vector-borne infections: a case study of canine leishmaniasis in southwest France. PLoS One 6: e20817. PubMed PMC
Branco S, Alves-Pires C, Maia C, Cortes S, Cristovao JM, et al. (2013) Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central Region, Portugal. Acta Trop 125: 339–48. PubMed
Volf P, Rohousova I (2001) Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology 122: 37–41. PubMed
Boggiatto PM, Gibson-Corley KN, Metz K, Gallup JM, Hostetter JM, et al. (2011) Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Negl Trop Dis 5 (4) e1019. PubMed PMC
Synthetic peptides as a novel approach for detecting antibodies against sand fly saliva
GENBANK
KF257364, KF257365, KF257366, KF257367, KF257368, KF257369