Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
28704370
PubMed Central
PMC5509103
DOI
10.1371/journal.pntd.0005600
PII: PNTD-D-17-00167
Knihovny.cz E-zdroje
- MeSH
- Leishmania imunologie MeSH
- Psychodidae parazitologie fyziologie MeSH
- slinné proteiny a peptidy imunologie metabolismus MeSH
- sliny imunologie parazitologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- slinné proteiny a peptidy MeSH
BACKGROUND: Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. METHODS AND FINDINGS: In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. CONCLUSIONS: In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Zobrazit více v PubMed
Antinori S, Schifanella L, Corbellino M. Leishmaniasis: new insights from an old and neglected disease. European Journal of Clinical Microbiology & Infectious Diseases. 2012;31(2):109–18. doi: 10.1007/s10096-011-1276-0 PubMed DOI
Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries. 2015;9(6):588–96. doi: 10.3855/jidc.6833 PubMed DOI
Hotez PJ, Remme JH, Buss P, Alleyne G, Morel C, Breman JG. Combating tropical infectious diseases: report of the disease control priorities in developing countries Project. Clin Infect Dis. 2004;38(6):871–8. doi: 10.1086/382077 . PubMed DOI
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671 doi: 10.1371/journal.pone.0035671 ; PubMed Central PMCID: PMCPMC3365071. PubMed DOI PMC
Rogers ME. The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front Microbiol. 2012;3:223 doi: 10.3389/fmicb.2012.00223 ; PubMed Central PMCID: PMCPMC3384971. PubMed DOI PMC
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2):123–47. doi: 10.1111/j.1365-2915.2012.01034.x . PubMed DOI
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276 doi: 10.1186/1756-3305-5-276 ; PubMed Central PMCID: PMCPMC3533922. PubMed DOI PMC
Van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P. Leishmania-macrophage interactions: Insights into the redox biology. Free Radical Biology and Medicine. 2011;51(2):337–51. doi: 10.1016/j.freeradbiomed.2011.05.011 PubMed DOI
Horta MF, Mendes BP, Roma EH, Noronha FS, Macêdo JP, Oliveira LS, et al. Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res. 2012;2012:203818 doi: 10.1155/2012/203818 ; PubMed Central PMCID: PMCPMC3337613. PubMed DOI PMC
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491 doi: 10.3389/fimmu.2014.00491 ; PubMed Central PMCID: PMCPMC4188125. PubMed DOI PMC
Adler S, Theodor O. The mouthparts, alimentary tract and salivary apparatus of the female in Phlebotomus papatasi Annals of tropical Medicine and Parasitology; 1926. p. 109–42.
Abdel-Badei NM, Khater EI, Daba S, Shehata MG. Morphometrics and protein profiles of the salivary glands of Phlebotomus papatasi and Phlebotomus langeroni sand flies. Trans R Soc Trop Med Hyg. 2012;106(4):235–42. doi: 10.1016/j.trstmh.2012.01.006 . PubMed DOI
Volf P, Tesarova P, Nohynkova E. Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Medical and Veterinary Entomology. 2000;14(3):251–6. doi: 10.1046/j.1365-2915.2000.00240.x PubMed DOI
Volf P, Rohousova I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001;122 Pt 1:37–41. . PubMed
Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci. 1994;345(1312):223–30. doi: 10.1098/rstb.1994.0097 . PubMed DOI
Lanzaro GC, Lopes AH, Ribeiro JM, Shoemaker CB, Warburg A, Soares M, et al. Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Mol Biol. 1999;8(2):267–75. . PubMed
Rohoušová I, Volfová V, Nová S, Volf P. Individual variability of salivary gland proteins in three Phlebotomus species. Acta Trop. 2012;122(1):80–6. S0001-706X(11)00361-5 [pii] doi: 10.1016/j.actatropica.2011.12.004 . PubMed DOI
Ramalho-Ortigão M, Coutinho-Abreu IV, Balbino VQ, Figueiredo CA, Mukbel R, Dayem H, et al. Phlebotomus papatasi SP15: mRNA expression variability and amino acid sequence polymorphisms of field populations. Parasit Vectors. 2015;8:298 doi: 10.1186/s13071-015-0914-2 ; PubMed Central PMCID: PMCPMC4472253. PubMed DOI PMC
Cerna P, Mikes L, Volf P. Salivary gland hyaluronidase in various species of phlebotomine sand flies (Diptera: psychodidae). Insect Biochem Mol Biol. 2002;32(12):1691–7. . PubMed
Coutinho-Abreu IV, Wadsworth M, Stayback G, Ramalho-Ortigao M, McDowell MA. Differential expression of salivary gland genes in the female sand fly Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol. 2010;47(6):1146–55. . PubMed
Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci U S A. 1999;96(26):15155–60. ; PubMed Central PMCID: PMCPMC24789. PubMed PMC
Valenzuela JG, Garfield M, Rowton ED, Pham VM. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207(Pt 21):3717–29. doi: 10.1242/jeb.01185 . PubMed DOI
Valenzuela JG, Belkaid Y, Rowton E, Ribeiro JM. The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. J Exp Biol. 2001;204(Pt 2):229–37. . PubMed
Abdeladhim M, Jochim RC, Ben Ahmed M, Zhioua E, Chelbi I, Cherni S, et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans. PLoS ONE. 2012;7(11):e47347 doi: 10.1371/journal.pone.0047347 ; PubMed Central PMCID: PMCPMC3491003. PubMed DOI PMC
Abdeladhim M, V Coutinho-Abreu I, Townsend S, Pasos-Pinto S, Sanchez L, Rasouli M, et al. Molecular diversity between salivary proteins from New World and Old World sand flies with emphasis on Bichromomyia olmeca, the sand fly vector of Leishmania mexicana in Mesoamerica. PLoS Negl Trop Dis. 2016;10(7):e0004771 doi: 10.1371/journal.pntd.0004771 ; PubMed Central PMCID: PMCPMC4943706. PubMed DOI PMC
Francischetti IM. Platelet aggregation inhibitors from hematophagous animals. Toxicon. 2010;56(7):1130–44. doi: 10.1016/j.toxicon.2009.12.003 ; PubMed Central PMCID: PMCPMC2888830. PubMed DOI PMC
Abdeladhim M, Kamhawi S, Valenzuela JG. What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703. doi: 10.1016/j.meegid.2014.07.028 . PubMed DOI PMC
Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003;48:73–88. doi: 10.1146/annurev.ento.48.060402.102812 . PubMed DOI
Champagne DE, Smartt CT, Ribeiro JM, James AA. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family. Proc Natl Acad Sci U S A. 1995;92(3):694–8. ; PubMed Central PMCID: PMCPMC42686. PubMed PMC
Andersen JF, Hinnebusch BJ, Lucas DA, Conrads TP, Veenstra TD, Pham VM, et al. An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots). BMC Genomics. 2007;8:102 doi: 10.1186/1471-2164-8-102 ; PubMed Central PMCID: PMCPMC1876217. PubMed DOI PMC
Valenzuela JG, Charlab R, Galperin MY, Ribeiro JM. Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J Biol Chem. 1998;273(46):30583–90. . PubMed
Vlkova M, Sima M, Rohousova I, Kostalova T, Sumova P, Volfova V, et al. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl Trop Dis. 2014;8(2):e2709 doi: 10.1371/journal.pntd.0002709 ; PubMed Central PMCID: PMCPMC3937273. PubMed DOI PMC
Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, et al. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7:52 doi: 10.1186/1471-2164-7-52 ; PubMed Central PMCID: PMCPMC1434747. PubMed DOI PMC
Hostomska J, Volfova V, Mu J, Garfield M, Rohousova I, Volf P, et al. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus. BMC Genomics. 2009;10:282 doi: 10.1186/1471-2164-10-282 ; PubMed Central PMCID: PMCPMC2714351. PubMed DOI PMC
Kato H, Anderson JM, Kamhawi S, Oliveira F, Lawyer PG, Pham VM, et al. High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya). BMC Genomics. 2006;7:226 doi: 10.1186/1471-2164-7-226 ; PubMed Central PMCID: PMCPMC1574310. PubMed DOI PMC
Rohoušová I, Subrahmanyam S, Volfová V, Mu J, Volf P, Valenzuela JG, et al. Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis. 2012;6(5):e1660 doi: 10.1371/journal.pntd.0001660 ; PubMed Central PMCID: PMCPMC3358328. PubMed DOI PMC
Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, Fischer L, et al. From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine. 2006;24(3):374–90. doi: 10.1016/j.vaccine.2005.07.085 . PubMed DOI
de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarêncio J, Barral-Netto M, et al. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection. PLoS Negl Trop Dis. 2013;7(5):e2242 doi: 10.1371/journal.pntd.0002242 ; PubMed Central PMCID: PMCPMC3662654. PubMed DOI PMC
Kato H, Jochim RC, Gomez EA, Uezato H, Mimori T, Korenaga M, et al. Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Infect Genet Evol. 2013;13:56–66. doi: 10.1016/j.meegid.2012.08.024 ; PubMed Central PMCID: PMCPMC3873855. PubMed DOI PMC
Mans BJ, Calvo E, Ribeiro JM, Andersen JF. The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae. J Biol Chem. 2007;282(50):36626–33. doi: 10.1074/jbc.M706410200 . PubMed DOI
Calvo E, Pham VM, Marinotti O, Andersen JF, Ribeiro JM. The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics. 2009;10:57 doi: 10.1186/1471-2164-10-57 ; PubMed Central PMCID: PMCPMC2644710. PubMed DOI PMC
Isawa H, Yuda M, Orito Y, Chinzei Y. A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen. J Biol Chem. 2002;277(31):27651–8. doi: 10.1074/jbc.M203505200 . PubMed DOI
Alvarenga PH, Francischetti IM, Calvo E, Sá-Nunes A, Ribeiro JM, Andersen JF. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. PLoS Biol. 2010;8(11):e1000547 doi: 10.1371/journal.pbio.1000547 ; PubMed Central PMCID: PMCPMC2994686. PubMed DOI PMC
Alvarenga PH, Xu X, Oliveira F, Chagas AC, Nascimento CR, Francischetti IM, et al. Novel family of insect salivary inhibitors blocks contact pathway activation by binding to polyphosphate, heparin, and dextran sulfate. Arterioscler Thromb Vasc Biol. 2013;33(12):2759–70. doi: 10.1161/ATVBAHA.113.302482 ; PubMed Central PMCID: PMCPMC4191670. PubMed DOI PMC
Collin N, Assumpção TC, Mizurini DM, Gilmore DC, Dutra-Oliveira A, Kotsyfakis M, et al. Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly Lutzomyia longipalpis blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo. Arterioscler Thromb Vasc Biol. 2012;32(9):2185–98. doi: 10.1161/ATVBAHA.112.253906 ; PubMed Central PMCID: PMCPMC3421056. PubMed DOI PMC
Ribeiro JM, Mans BJ, Arcà B. An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol. 2010;40(11):767–84. S0965-1748(10)00170-0 [pii] doi: 10.1016/j.ibmb.2010.08.002 ; PubMed Central PMCID: PMCPMC2950210. PubMed DOI PMC
Klein J, Horejsi V. Immunology (Second edition): Oxford: Blackwell Science; 1997.
Oliveira MC, Pelegrini-da-Silva A, Parada CA, Tambeli CH. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue. Neuroscience. 2007;145(2):708–14. doi: 10.1016/j.neuroscience.2006.12.021 . PubMed DOI
Xanthos DN, Bennett GJ, Coderre TJ. Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain. 2008;137(3):640–51. doi: 10.1016/j.pain.2007.10.031 ; PubMed Central PMCID: PMCPMC4494839. PubMed DOI PMC
Xu X, Oliveira F, Chang BW, Collin N, Gomes R, Teixeira C, et al. Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem. 2011;286(37):32383–93. M111.268904 [pii] doi: 10.1074/jbc.M111.268904 ; PubMed Central PMCID: PMCPMC3173228. PubMed DOI PMC
Xu X, Chang BW, Mans BJ, Ribeiro JM, Andersen JF. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 1):105–13. doi: 10.1107/S0907444912043326 ; PubMed Central PMCID: PMCPMC3532134. PubMed DOI PMC
Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell. 1999;3(5):661–71. . PubMed
Mans BJ, Ribeiro JM, Andersen JF. Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J Biol Chem. 2008;283(27):18721–33. doi: 10.1074/jbc.M800188200 ; PubMed Central PMCID: PMCPMC2441560. PubMed DOI PMC
Sima M, Novotny M, Pravda L, Sumova P, Rohousova I, Volf P. The diversity of yellow-related proteins in sand flies (Diptera: Psychodidae). PLoS ONE. 2016;11(11):e0166191 doi: 10.1371/journal.pone.0166191 ; PubMed Central PMCID: PMCPMC5094789. PubMed DOI PMC
Ribeiro JMC, Rossignol PA, Spielman A. Blood-finding strategy of a capillary-feeding sandfly, Lutzomyia longipalpis. Comparative Biochemistry and Physiology a-Physiology. 1986;83(4):683–6. PubMed
Lerner EA, Ribeiro JMC, Nelson RJ, Lerner MR. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Journal of Biological Chemistry. 1991;266(17):11234–6. PubMed
Ribeiro JMC, Katz O, Pannell LK, Waitumbi J, Warburg A. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5 '-AMP. Journal of Experimental Biology. 1999;202(11):1551–9. PubMed
Edlund A, Sidén A, Sollevi A. Evidence for an anti-aggregatory effect of adenosine at physiological concentrations and for its role in the action of dipyridamole. Thromb Res. 1987;45(2):183–90. . PubMed
Dionisotti S, Zocchi C, Varani K, Borea PA, Ongini E. Effects of adenosine derivatives on human and rabbit platelet aggregation. Correlation of adenosine receptor affinities and antiaggregatory activity. Naunyn Schmiedebergs Arch Pharmacol. 1992;346(6):673–6. . PubMed
Collis MG. The vasodilator role of adenosine. Pharmacol Ther. 1989;41(1–2):143–62. . PubMed
Volfova V, Hostomska J, Cerny M, Votypka J, Volf P. Hyaluronidase of bloodsucking insects and its enhancing effect on leishmania infection in mice. PLoS Negl Trop Dis. 2008;2(9):e294 doi: 10.1371/journal.pntd.0000294 ; PubMed Central PMCID: PMCPMC2553483. PubMed DOI PMC
Chagas AC, Oliveira F, Debrabant A, Valenzuela JG, Ribeiro JM, Calvo E . Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10(2):e1003923 doi: 10.1371/journal.ppat.1003923 ; PubMed Central PMCID: PMCPMC3916414. PubMed DOI PMC
Anjili CO, Mbati PA, Mwangi RW, Githure JI, Olobo JO, Robert LL, et al. The chemotactic effect of Phlebotomus duboscqi (Diptera, Psychodidae) salivary gland lysates to murine monocytes. Acta Tropica. 1995;60(2):97–100. PubMed
Zer R, Yaroslavski I, Rosen L, Warburg A. Effect of sand fly saliva on Leishmania uptake by murine macrophages. International Journal for Parasitology. 2001;31(8):810–4. PubMed
Teixeira C, Gomes R, Oliveira F, Meneses C, Gilmore DC, Elnaiem DE, et al. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PLoS Negl Trop Dis. 2014;8(4):e2781 doi: 10.1371/journal.pntd.0002781 ; PubMed Central PMCID: PMCPMC3998922. PubMed DOI PMC
Teixeira CR, Teixeira MJ, Gomes RBB, Santos CS, Andrade BB, Raffaele-Netto I, et al. Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment. Journal of Immunology. 2005;175(12):8346–53. PubMed
de Moura TR, Oliveira F, Rodrigues GC, Carneiro MW, Fukutani KF, Novais FO, et al. Immunity to Lutzomyia intermedia saliva modulates the inflammatory environment induced by Leishmania braziliensis. PLoS Negl Trop Dis. 2010;4(6):e712 doi: 10.1371/journal.pntd.0000712 ; PubMed Central PMCID: PMCPMC2886072. PubMed DOI PMC
Hall LR, Titus RG. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. Journal of Immunology. 1995;155(7):3501–6. PubMed
Mbow ML, Bleyenberg JA, Hall LR, Titus RG. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. Journal of Immunology. 1998;161(10):5571–7. PubMed
Waitumbi J, Warburg A. Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages. Infection and Immunity. 1998;66(4):1534–7. PubMed PMC
Dong ZY, Yang XL, Xie KP, Juang SH, Llansa N, Fidler IJ. Activation of inducible nitric oxide synthase gene in murine macrophages requires protein phosphatases 1 and 2A activities. Journal of Leukocyte Biology. 1995;58(6):725–32. PubMed
Katz O, Waitumbi JN, Zer R, Warburg A. Adenosine, AMP, and protein phosphatase activity in sandfly saliva. American Journal of Tropical Medicine and Hygiene. 2000;62(1):145–50. PubMed
Rogers KA, Titus RG. Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003;25(3):127–34. . PubMed
Abdeladhim M, Ben Ahmed M, Marzouki S, Belhadj Hmida N, Boussoffara T, Belhaj Hamida N, et al. Human cellular immune response to the saliva of Phlebotomus papatasi is mediated by IL-10-producing CD8+ T cells and Th1-polarized CD4+ lymphocytes. PLoS Negl Trop Dis. 2011;5(10):e1345 doi: 10.1371/journal.pntd.0001345 ; PubMed Central PMCID: PMCPMC3186761. PubMed DOI PMC
Hasko G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. Journal of Immunology. 1996;157(10):4634–40. PubMed
Hasko G, Nemeth ZH, Vizi ES, Salzman AL, Szabo C. An agonist of adenosine A(3) receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endotoxemic mice. European Journal of Pharmacology. 1998;358(3):261–8. PubMed
Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, et al. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. Journal of Immunology. 2000;164(1):436–42. PubMed
Le Moine O, Stordeur P, Schandené L, Marchant A, de Groote D, Goldman M, et al. Adenosine enhances IL-10 secretion by human monocytes. J Immunol. 1996;156(11):4408–14. . PubMed
Costa DJ, Favali C, Clarencio J, Afonso L, Conceicao V, Miranda JC, et al. Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infection and Immunity. 2004;72(3):1298–305. doi: 10.1128/IAI.72.3.1298-1305.2004 PubMed DOI PMC
Norsworthy NB, Sun JR, Elnaiem D, Lanzaro G, Soong L. Sand fly saliva enhances Leishmania amazonensis infection by modulation interleukin-10 production. Infection and Immunity. 2004;72(3):1240–7. doi: 10.1128/IAI.72.3.1240-1247.2004 PubMed DOI PMC
Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L.major infection. Journal of Immunology. 2001;167(9):5226–30. PubMed
Soares MBP, Titus RG, Shoemaker CB, David JR, Bozza M. The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. Journal of Immunology. 1998;160(4):1811–6. PubMed
Brodie TM, Smith MC, Morris RV, Titus RG. Immunomodulatory effects of the Lutzomyia longipalpis salivary gland protein maxadilan on mouse macrophages. Infection and Immunity. 2007;75(5):2359–65. doi: 10.1128/IAI.01812-06 PubMed DOI PMC
Araújo-Santos T, Prates DB, Andrade BB, Nascimento DO, Clarêncio J, Entringer PF, et al. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E₂ production in murine macrophages. PLoS Negl Trop Dis. 2010;4(11):e873 doi: 10.1371/journal.pntd.0000873 ; PubMed Central PMCID: PMCPMC2970534. PubMed DOI PMC
Bozza PT, Magalhães KG, Weller PF. Leukocyte lipid bodies—Biogenesis and functions in inflammation. Biochim Biophys Acta. 2009;1791(6):540–51. doi: 10.1016/j.bbalip.2009.01.005 ; PubMed Central PMCID: PMCPMC2693476. PubMed DOI PMC
Pimenta PF, Dos Santos MA, De Souza W. Fine structure and cytochemistry of the interaction between Leishmania mexicana amazonensis and rat neutrophils and eosinophils. J Submicrosc Cytol. 1987;19(3):387–95. . PubMed
Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–4. doi: 10.1126/science.1159194 PubMed DOI PMC
Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25(11):505–10. doi: 10.1016/j.pt.2009.08.003 . PubMed DOI
Monteiro MC, Lima HC, Souza AA, Titus RG, Romão PR, Cunha FQ. Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am J Trop Med Hyg. 2007;76(1):88–94. . PubMed
Vasconcelos CO, Coêlho ZC, Chaves CeS, Teixeira CR, Pompeu MM, Teixeira MJ. Distinct cellular migration induced by Leishmania infantum chagasi and saliva from Lutzomyia longipalpis in a hemorrhagic pool model. Rev Inst Med Trop Sao Paulo. 2014;56(1):21–7. doi: 10.1590/S0036-46652014000100003 ; PubMed Central PMCID: PMCPMC4085829. PubMed DOI PMC
Silva F, Gomes R, Prates D, Miranda JC, Andrade B, Barral-Netto M, et al. Inflammatory cell infiltration and high antibody production in BALB/c mice caused by natural exposure to Lutzomyia longipalpis bites. Am J Trop Med Hyg. 2005;72(1):94–8. 72/1/94 [pii]. . PubMed
van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, et al. Cutting edge: Neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. Journal of Immunology. 2004;173(11):6521–5. PubMed
Prates DB, Araujo-Santos T, Luz NF, Andrade BB, Franca-Costa J, Afonso L, et al. Lutzomyia longipalpis saliva drives apoptosis and enhances parasite burden in neutrophils. Journal of Leukocyte Biology. 2011;90(3):575–82. doi: 10.1189/jlb.0211105 PubMed DOI
Titus RG, Ribeiro JMC. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239(4845):1306–8. PubMed
Theodos CM, Ribeiro JMC, Titus RG. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infection and Immunity. 1991;59(5):1592–8. PubMed PMC
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a natural model of cutaneous leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. Journal of Experimental Medicine. 1998;188(10):1941–53. doi: 10.1084/jem.188.10.1941 PubMed DOI PMC
Samuelson J, Lerner E, Tesh R, Titus R. A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. Journal of Experimental Medicine. 1991;173(1):49–54. PubMed PMC
Bezerra HS, Teixeira MJ. Effect of Lutzomyia whitmani (Diptera: Psychodidae) salivary gland lysates on Leishmania (Viannia) braziliensis infection in BALB/c mice. Mem Inst Oswaldo Cruz. 2001;96(3):349–51. . PubMed
Rohoušová I, Hostomská J, Vlková M, Kobets T, Lipoldová M, Volf P. The protective effect against Leishmania infection conferred by sand fly bites is limited to short-term exposure. Int J Parasitol. 2011;41(5):481–5. S0020-7519(11)00033-6 [pii] doi: 10.1016/j.ijpara.2011.01.003 . PubMed DOI
Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous Leishmaniasis resulting from bites of uninfected sand flies. Science. 2000;290(5495):1351–4. doi: 10.1126/science.290.5495.1351 PubMed DOI
Belkaid Y, Valenzuela JG, Kamhawi S, Rowton E, Sacks DL, Ribeiro JM. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proc Natl Acad Sci U S A. 2000;97(12):6704–9. ; PubMed Central PMCID: PMCPMC18709. PubMed PMC
Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: Characterization of a protective salivary protein. Journal of Experimental Medicine. 2001;194(3):331–42. doi: 10.1084/jem.194.3.331 PubMed DOI PMC
McDowell MA. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT). Trends Parasitol. 2015;31(8):363–72. doi: 10.1016/j.pt.2015.04.011 . PubMed DOI
Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol. 2012;3:110 doi: 10.3389/fimmu.2012.00110 ; PubMed Central PMCID: PMCPMC3349933. PubMed DOI PMC
Thiakaki M, Rohousova I, Volfova V, Volf P, Chang KP, Soteriadou K. Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. Microbes Infect. 2005;7(4):760–6. S1286-4579(05)00062-6 [pii] doi: 10.1016/j.micinf.2005.01.013 . PubMed DOI
Tavares NM, Silva RA, Costa DJ, Pitombo MA, Fukutani KF, Miranda JC, et al. Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis. 2011;5(5):e1169 PNTD-D-10-00041 [pii] doi: 10.1371/journal.pntd.0001169 ; PubMed Central PMCID: PMCPMC3104964. PubMed DOI PMC
Gomes R, Cavalcanti K, Teixeira C, Carvalho AM, Mattos PS, Cristal JR, et al. Immunity to Lutzomyia whitmani saliva protects against experimental Leishmania braziliensis infection. PLoS Negl Trop Dis. 2016;10(11):e0005078 doi: 10.1371/journal.pntd.0005078 ; PubMed Central PMCID: PMCPMC5094744. PubMed DOI PMC
de Moura TR, Oliveira F, Novais FO, Miranda JC, Clarêncio J, Follador I, et al. Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS Negl Trop Dis. 2007;1(2):e84 doi: 10.1371/journal.pntd.0000084 ; PubMed Central PMCID: PMCPMC2100374. PubMed DOI PMC
Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ, Silva C, et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U S A. 2008;105(22):7845–50. 0712153105 [pii] doi: 10.1073/pnas.0712153105 ; PubMed Central PMCID: PMCPMC2397325. PubMed DOI PMC
Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC, Elnaiem DE, et al. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J Invest Dermatol. 2012;132(12):2735–43. doi: 10.1038/jid.2012.205 ; PubMed Central PMCID: PMCPMC3461249. PubMed DOI PMC
Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis. 2008;2(4). e226 doi: 10.1371/journal.pntd.0000226 PubMed DOI PMC
Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015;7(290):290ra90 doi: 10.1126/scitranslmed.aaa3043 . PubMed DOI
Lestinova T, Vlkova M, Votypka J, Volf P, Rohousova I. Phlebotomus papatasi exposure cross-protects mice against Leishmania major co-inoculated with Phlebotomus duboscqi salivary gland homogenate. Acta Trop. 2015;144:9–18. doi: 10.1016/j.actatropica.2015.01.005 . PubMed DOI
Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clinics in Dermatology. 1999;17(3):279–89. doi: 10.1016/s0738-081x(99)00046-2 PubMed DOI
Andrade BB, Teixeira CR. Biomarkers for exposure to sand flies bites as tools to aid control of leishmaniasis. Front Immunol. 2012;3:121 doi: 10.3389/fimmu.2012.00121 ; PubMed Central PMCID: PMCPMC3356838. PubMed DOI PMC
Vlkova M, Rohousova I, Hostomska J, Pohankova L, Zidkova L, Drahota J, et al. Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi. PLoS Negl Trop Dis. 2012;6(7):e1719 PNTD-D-12-00242 [pii] doi: 10.1371/journal.pntd.0001719 ; PubMed Central PMCID: PMCPMC3393673. PubMed DOI PMC
Martín-Martín I, Molina R, Jiménez M. Kinetics of anti-Phlebotomus perniciosus saliva antibodies in experimentally bitten mice and rabbits. PLoS ONE. 2015;10(11):e0140722 doi: 10.1371/journal.pone.0140722 . PubMed DOI PMC
Hostomska J, Rohousova I, Volfova V, Stanneck D, Mencke N, Volf P. Kinetics of canine antibody response to saliva of the sand fly Lutzomyia longipalpis. Vector Borne Zoonotic Dis. 2008;8(4):443–50. doi: 10.1089/vbz.2007.0214 . PubMed DOI
Collin N, Gomes R, Teixeira C, Cheng L, Laughinghouse A, Ward JM, et al. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 2009;5(5):e1000441 doi: 10.1371/journal.ppat.1000441 ; PubMed Central PMCID: PMCPMC2677456. PubMed DOI PMC
Vlkova M, Rohousova I, Drahota J, Stanneck D, Kruedewagen EM, Mencke N, et al. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5(10):e1344 doi: 10.1371/journal.pntd.0001344 ; PubMed Central PMCID: PMCPMC3191129. PubMed DOI PMC
Gomes RB, Brodskyn C, de Oliveira CI, Costa J, Miranda JC, Caldas A, et al. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J Infect Dis. 2002;186(10):1530–4. JID020256 [pii] doi: 10.1086/344733 . PubMed DOI
Vinhas V, Andrade BB, Paes F, Bomura A, Clarencio J, Miranda JC, et al. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol. 2007;37(11):3111–21. doi: 10.1002/eji.200737431 . PubMed DOI
Marzouki S, Ben Ahmed M, Boussoffara T, Abdeladhim M, Ben Aleya-Bouafif N, Namane A, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84(5):653–61. doi: 10.4269/ajtmh.2011.10-0598 ; PubMed Central PMCID: PMCPMC3083729. PubMed DOI PMC
Carvalho AM, Cristal JR, Muniz AC, Carvalho LP, Gomes R, Miranda JC, et al. Interleukin 10-dominant immune response and increased risk of cutaneous leishmaniasis after natural exposure to Lutzomyia intermedia sand flies. J Infect Dis. 2015;212(1):157–65. doi: 10.1093/infdis/jiv020 ; PubMed Central PMCID: PMCPMC4539914. PubMed DOI PMC
Clements MF, Gidwani K, Kumar R, Hostomska J, Dinesh DS, Kumar V, et al. Measurement of recent exposure to Phlebotomus argentipes, the vector of Indian visceral Leishmaniasis, by using human antibody responses to sand fly saliva. Am J Trop Med Hyg. 2010;82(5):801–7. doi: 10.4269/ajtmh.2010.09-0336 ; PubMed Central PMCID: PMCPMC2861389. PubMed DOI PMC
Rohousova I, Ozensoy S, Ozbel Y, Volf P. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology. 2005;130(Pt 5):493–9. . PubMed
Gomes RB, Mendonça IL, Silva VC, Ruas J, Silva MB, Cruz MS, et al. Antibodies against Lutzomyia longipalpis saliva in the fox Cerdocyon thous and the sylvatic cycle of Leishmania chagasi. Trans R Soc Trop Med Hyg. 2007;101(2):127–33. doi: 10.1016/j.trstmh.2006.06.002 . PubMed DOI
Teixeira C, Gomes R, Collin N, Reynoso D, Jochim R, Oliveira F, et al. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis. 2010;4(3):e638 doi: 10.1371/journal.pntd.0000638 ; PubMed Central PMCID: PMCPMC2843637. PubMed DOI PMC
Marzouki S, Abdeladhim M, Abdessalem CB, Oliveira F, Ferjani B, Gilmore D, et al. Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans. PLoS Negl Trop Dis. 2012;6(11):e1911 doi: 10.1371/journal.pntd.0001911 ; PubMed Central PMCID: PMCPMC3510156. PubMed DOI PMC
Martín-Martín I, Molina R, Jiménez M. An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop. 2012;123(1):22–30. doi: 10.1016/j.actatropica.2012.03.003 . PubMed DOI
Martín-Martín I, Molina R, Rohoušová I, Drahota J, Volf P, Jiménez M. High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet Parasitol. 2014. doi: 10.1016/j.vetpar.2014.02.045 . PubMed DOI
Gidwani K, Picado A, Rijal S, Singh SP, Roy L, Volfova V, et al. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: a cluster-randomized trial. PLoS Negl Trop Dis. 2011;5(9):e1296 doi: 10.1371/journal.pntd.0001296 ; PubMed Central PMCID: PMCPMC3172194. PubMed DOI PMC
Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, et al. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg. 2000;62(6):740–5. . PubMed
Aquino DM, Caldas AJ, Miranda JC, Silva AA, Barral-Netto M, Barral A. Epidemiological study of the association between anti-Lutzomyia longipalpis saliva antibodies and development of delayed-type hypersensitivity to Leishmania antigen. Am J Trop Med Hyg. 2010;83(4):825–7. doi: 10.4269/ajtmh.2010.10-0182 ; PubMed Central PMCID: PMCPMC2946750. PubMed DOI PMC
Miles SA, Conrad SM, Aves RG, Jeronimo SMB, Mosser DM. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. Journal of Experimental Medicine. 2005;201(5):747–54. doi: 10.1084/jem.20041470 PubMed DOI PMC
Loría-Cervera EN, Andrade-Narváez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. 2014;56(1):1–11. doi: 10.1590/S0036-46652014000100001 ; PubMed Central PMCID: PMCPMC4085833. PubMed DOI PMC
Molina R, Jiménez MI, Cruz I, Iriso A, Martín-Martín I, Sevillano O, et al. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet Parasitol. 2012;190(1–2):268–71. doi: 10.1016/j.vetpar.2012.05.006 . PubMed DOI
Rohousova I, Talmi-Frank D, Kostalova T, Polanska N, Lestinova T, Kassahun A, et al. Exposure to Leishmania spp. and sand flies in domestic animals in northwestern Ethiopia. Parasit Vectors. 2015;8:360 doi: 10.1186/s13071-015-0976-1 ; PubMed Central PMCID: PMCPMC4495613. PubMed DOI PMC
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, et al. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral Leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4(3):e649 doi: 10.1371/journal.pntd.0000649 ; PubMed Central PMCID: PMCPMC2843636. PubMed DOI PMC
Snapper CM, Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236(4804):944–7. . PubMed
Prates DB, Santos LD, Miranda JC, Souza AP, Palma MS, Barral-Netto M, et al. Changes in amounts of total salivary gland proteins of Lutzomyia longipalpis (Diptera: Psychodidae) according to age and diet. J Med Entomol. 2008;45(3):409–13. . PubMed
Soares BR, Souza AP, Prates DB, de Oliveira CI, Barral-Netto M, Miranda JC, et al. Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral leishmaniasis. Sci Rep. 2013;3:2352 doi: 10.1038/srep02352 ; PubMed Central PMCID: PMCPMC3733060. PubMed DOI PMC
Marzouki S, Kammoun-Rebai W, Bettaieb J, Abdeladhim M, Hadj Kacem S, Abdelkader R, et al. Validation of recombinant salivary protein PpSP32 as a suitable marker of human exposure to Phlebotomus papatasi, the vector of Leishmania major in Tunisia. PLoS Negl Trop Dis. 2015;9(9):e0003991 doi: 10.1371/journal.pntd.0003991 ; PubMed Central PMCID: PMCPMC4569422. PubMed DOI PMC
Sima M, Ferencova B, Warburg A, Rohousova I, Volf P. Recombinant salivary proteins of Phlebotomus orientalis are suitable antigens to measure exposure of domestic animals to sand fly bites. PLoS Negl Trop Dis. 2016;10(3):e0004553 doi: 10.1371/journal.pntd.0004553 ; PubMed Central PMCID: PMCPMC4795800. PubMed DOI PMC
Drahota J, Martin-Martin I, Sumova P, Rohousova I, Jimenez M, Molina R, et al. Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases Vector. PLoS Negl Trop Dis. 2014;8(1):e2597 doi: 10.1371/journal.pntd.0002597 ; PubMed Central PMCID: PMCPMC3879210. PubMed DOI PMC
Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9(6):e0003855 doi: 10.1371/journal.pntd.0003855 ; PubMed Central PMCID: PMCPMC4482481. PubMed DOI PMC
Kostalova T, Lestinova T, Maia C, Sumova P, Vlkova M, Willen L, et al. The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med Vet Entomol. 2016. doi: 10.1111/mve.12192 . PubMed DOI
Bahia D, Gontijo NF, León IR, Perales J, Pereira MH, Oliveira G, et al. Antibodies from dogs with canine visceral leishmaniasis recognise two proteins from the saliva of Lutzomyia longipalpis. Parasitol Res. 2007;100(3):449–54. doi: 10.1007/s00436-006-0307-8 . PubMed DOI
Mondragon-Shem K, Al-Salem WS, Kelly-Hope L, Abdeladhim M, Al-Zahrani MH, Valenzuela JG, et al. Severity of old world cutaneous leishmaniasis is influenced by previous exposure to sandfly bites in Saudi Arabia. PLoS Negl Trop Dis. 2015;9(2):e0003449 doi: 10.1371/journal.pntd.0003449 ; PubMed Central PMCID: PMCPMC4315490. PubMed DOI PMC
Rossi E, Bongiorno G, Ciolli E, Di Muccio T, Scalone A, Gramiccia M, et al. Seasonal phenology, host-blood feeding preferences and natural Leishmania infection of Phlebotomus perniciosus (Diptera, Psychodidae) in a high-endemic focus of canine leishmaniasis in Rome province, Italy. Acta Trop. 2008;105(2):158–65. doi: 10.1016/j.actatropica.2007.10.005 . PubMed DOI
Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, et al. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS ONE. 2008;3(6):e2472 doi: 10.1371/journal.pone.0002472 ; PubMed Central PMCID: PMCPMC2427200. PubMed DOI PMC
Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, et al. Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J. 2009;8:198 doi: 10.1186/1475-2875-8-198 ; PubMed Central PMCID: PMCPMC2733152. PubMed DOI PMC
Poinsignon A, Samb B, Doucoure S, Drame PM, Sarr JB, Sow C, et al. First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to Anopheles funestus bites. Trop Med Int Health. 2010;15(10):1198–203. doi: 10.1111/j.1365-3156.2010.02611.x . PubMed DOI
Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, et al. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS ONE. 2010;5(12):e15596 doi: 10.1371/journal.pone.0015596 ; PubMed Central PMCID: PMCPMC3001874. PubMed DOI PMC
Dama E, Cornelie S, Camara M, Somda MB, Poinsignon A, Ilboudo H, et al. In silico identification of a candidate synthetic peptide (Tsgf118-43) to monitor human exposure to tsetse flies in West Africa. PLoS Negl Trop Dis. 2013;7(9):e2455 doi: 10.1371/journal.pntd.0002455 ; PubMed Central PMCID: PMCPMC3784472. PubMed DOI PMC
Londono-Renteria B, Drame PM, Weitzel T, Rosas R, Gripping C, Cardenas JC, et al. An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors. 2015;8:533 doi: 10.1186/s13071-015-1160-3 ; PubMed Central PMCID: PMCPMC4605097. PubMed DOI PMC
Martín-Martín I, Molina R, Jiménez M. Molecular and immunogenic properties of apyrase SP01B and D7-related SP04 recombinant salivary proteins of Phlebotomus perniciosus from Madrid, Spain. Biomed Res Int. 2013;2013:526069 Epub 2013/09/22. doi: 10.1155/2013/526069 ; PubMed Central PMCID: PMCPMC3793307. PubMed DOI PMC
Infectiousness of Asymptomatic Meriones shawi, Reservoir Host of Leishmania major
Editorial: Hematophagous arthropod saliva: a multifunctional tool
Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research
Interactions between host biogenic amines and sand fly salivary yellow-related proteins
Synthetic peptides as a novel approach for detecting antibodies against sand fly saliva