The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae)

. 2016 ; 11 (11) : e0166191. [epub] 20161103

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27812196

Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.

Zobrazit více v PubMed

Ribeiro JMC, Mans BJ, Arca B. An insight into the sialome of bloodfeeding Nematocera. Insect Biochem Mol Biol. 2010;40: 767–784. 10.1016/j.ibmb.2010.08.002 PubMed DOI PMC

Abdeladhim M, Kamhawi S, Valenzuela JG. What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28: 691–703. 10.1016/j.meegid.2014.07.028 PubMed DOI PMC

Rohousova I, Ozensoy S, Ozbel Y, Volf P. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology. 2005;130: 493–499. PubMed

de Moura TR, Oliveira F, Novais FO, Miranda JC, Clarencio J, Follador I, et al. Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS Negl Trop Dis. 2007;1: e84 10.1371/journal.pntd.0000084 PubMed DOI PMC

Vlkova M, Rohousova I, Drahota J, Stanneck D, Kruedewagen EM, Mencke N, et a. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5: e1344 10.1371/journal.pntd.0001344 PubMed DOI PMC

Gidwani K, Picado A, Rijal S, Singh SP, Roy L, Volfova V, et al. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: A cluster-randomized trial. PLoS Negl Trop Dis. 2011;5: e1296 10.1371/journal.pntd.0001296 PubMed DOI PMC

Marzouki S, Ben Ahmed M, Boussoffara T, Abdeladhim M, Ben Aleya-Bouafif N, Namane A, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84: 653–661. 10.4269/ajtmh.2011.10-0598 PubMed DOI PMC

Charlab R, Valenzuela JG, Rowton ED, Ribeiro JMC. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA. 1999;96: 15155–15160. PubMed PMC

Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med. 2011;194: 331–342. PubMed PMC

Valenzuela JG, Garfield M, Rowton ED, Pham VM. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207: 3717–3729. 10.1242/jeb.01185 PubMed DOI

Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, Fisher L, et al. From transcriptome to immunome: Identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine. 2006;24: 374–390. 10.1016/j.vaccine.2005.07.085 PubMed DOI

Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, Seitz AE, et al. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7: 52 10.1186/1471-2164-7-52 PubMed DOI PMC

Kato H, Anderson JM, Kamhawi S, Oliveira F, Lawyer PG, Pham VM, et al. High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya). BMC Genomics. 2006;7: 226 10.1186/1471-2164-7-226 PubMed DOI PMC

Hostomska J, Volfova V, Mu J, Garfield M, Rohousova I, Volf P, et al. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus. BMC Genomics. 2009;10: 282 10.1186/1471-2164-10-282 PubMed DOI PMC

Abdeladhim M, Jochim RC, Ben Ahmed M, Zhioua E, Chelbi I, Cherni S, et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian Strain): The search for sand fly-secreted immunogenic proteins for humans. PLoS One. 2012;7: e47347 10.1371/journal.pone.0047347 PubMed DOI PMC

Rohousova I, Subrahmanyam S, Volfova V, Mu J, Volf P, Valenzuela JG, et al. Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis. 2012;6: e1660 10.1371/journal.pntd.0001660 PubMed DOI PMC

de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarencio J, Barral-Netto M, et al. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection. PLoS Negl Trop Dis. 2013;7: e2242 10.1371/journal.pntd.0002242 PubMed DOI PMC

Abrudan J, Ramalho-Ortigao M, O'Neil S, Stayback G, Wadsworth M, Bernard M, et al. The characterization of the Phlebotomus papatasi transcriptome. Insect Mol Biol. 2013;22: 211–232. 10.1111/imb.12015 PubMed DOI PMC

Kato H, Jochim RC, Gomez EA, Uezato H, Mimori T, Korenaga M, et al. Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Infect Genet Evol. 2013;13: 56–66. 10.1016/j.meegid.2012.08.024 PubMed DOI PMC

Vlkova M, Sima M, Rohousova I, Kostalova T, Sumova P, Volfova V, et al. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl Trop Dis. 2014;8: e2709 10.1371/journal.pntd.0002709 PubMed DOI PMC

Adeladhim M, Coutinho-Abreau IV, Townsend S, Pasos-Pinto S, Sanchez L, Rasouli M, et al. Molecular diversity between salivary proteins from New World and Old World sand flies with emphasis on Bichromomyia olmeca, the sand fly vector of Leishmania mexicana in Mesoamerica. PLoS Negl Trop Dis. 2016;10: e0004771 10.1371/journal.pntd.0004771 PubMed DOI PMC

Nash WG, Kamerow HN, Merril CR. Identification of a yellow gene-specific protein in Drosophila melanogaster by two-dimensional gel-electrophoresis. Biochem Genet. 1983;21: 1135–1142. PubMed

Hanes J, Simuth J. Identification and partial characterization of the major royal jelly protein of the honey-bee (Apis mellifera L). J Apic Res. 1992;31: 22–26.

Johnson JK, Li J, Christensen BM. Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2001;31: 1125–1135. PubMed

Alves-Silva J, Ribeiro JMC, Van Den Abbeele J, Attardo G, Hao R, Haines LR, et al. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics. 2010;11: e213. PubMed PMC

Xu X, Oliveira F, Chang BW, Collin N, Gomes R, Teixeira C, et al. Structure and function of a ‘‘yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem. 2011;286: 32383–32393. 10.1074/jbc.M111.268904 PubMed DOI PMC

Oliveira MCG, Pelegrini-Da-Silva A, Parada CA, Tambeli CH. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue. Neuroscience. 2007;145: 708–714. 10.1016/j.neuroscience.2006.12.021 PubMed DOI

Xanthos DN, Bennett GJ, Coderre TJ. Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain. 2008;137: 640–651. 10.1016/j.pain.2007.10.031 PubMed DOI PMC

Volf P, Skarupova S, Man P. Characterization of the lectin from females of Phlebotomus duboscqi sand flies. Eur J Biochem. 2002;269: 6294–6301. PubMed

Teixeira C, Gomes R, Collin N, Reynoso D, Jochim RC, Oliveira F, et al. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis. 2010;4: e638 10.1371/journal.pntd.0000638 PubMed DOI PMC

Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, et al. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl Trop Dis. 2010;4: e649 10.1371/journal.pntd.0000649 PubMed DOI PMC

Martin-Martin I, Molina R, Rohousova I, Drahota J, Volf P, Jimenez M. High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet Parasitol. 2014;202: 207–216. 10.1016/j.vetpar.2014.02.045 PubMed DOI

Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9: e0003855 10.1371/journal.pntd.0003855 PubMed DOI PMC

Sima M, Ferencova B, Warburg A, Rohousova I, Volf P. Recombinant salivary proteins of Phlebotomus orientalis are suitable antigens to measure exposure of domestic animals to sand fly bites. PLoS Negl Trop Dis. 2016;10: e0004553 10.1371/journal.pntd.0004553 PubMed DOI PMC

Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC, Elnaiem DE, et al. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted Leishmania conferring ulcer-free protection. J Invest Dermatol. 2012;132: 2735–2743. 10.1038/jid.2012.205 PubMed DOI PMC

Collin N, Gomes R, Teixeira C, Cheng L, Laughinghouse A, Ward JM, et al. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 2009;5: e1000441 10.1371/journal.ppat.1000441 PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2001;8: 785–786. PubMed

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23: 2947–2948. 10.1093/bioinformatics/btm404 PubMed DOI

Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21: 2104–2105. 10.1093/bioinformatics/bti263 PubMed DOI

Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18: 502–504. PubMed

Goldman N, Whelan S. Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol. 2000;17: 975–978. PubMed

Tamura K, Dudley J, Ne M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24: 1596–1599. 10.1093/molbev/msm092 PubMed DOI

Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7: 539 10.1038/msb.2011.75 PubMed DOI PMC

Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32: 1478–1488. 10.1038/emboj.2013.79 PubMed DOI PMC

Julenius K. NetCGlyc 1.0: Prediction of mammalian C-mannosylation sites. Glycobiology. 2007;17: 868–876. 10.1093/glycob/cwm050 PubMed DOI

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28: 235–242. PubMed PMC

Sali A, Overington JP. Derivation of rules for comparative protein modeling from a database of protein-structure alignments. Protein Sci. 1994;3: 1582–1596. 10.1002/pro.5560030923 PubMed DOI PMC

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001;98: 10037–10041. 10.1073/pnas.181342398 PubMed DOI PMC

Sehnal D, Svobodova Varekova R, Berka K, Pravda L, Navratilova V, et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform. 2013;5: 39 10.1186/1758-2946-5-39 PubMed DOI PMC

Cid H, Bunster M, Canales M, Gazitua F. Hydrophobicity and structural classes in proteins. Protein Eng Des Sel. 1992;5: 373–375. PubMed

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. 2004;14: 1188–1190. 10.1101/gr.849004 PubMed DOI PMC

Fiuza JA, Dey R, Davenport D, Abdeladhim M, Meneses C, Oliveira F, et al. Intradermal immunization of Leishmania donovani centrin knock-out parasites in combination with salivary protein LJM19 from sand fly vector induces a durable protective immune response in hamsters. PLoS Negl Trop Dis. 2016;10: e0004322 10.1371/journal.pntd.0004322 PubMed DOI PMC

Rohousova I, Volfova V, Nova S, Volf P. Individual variability of salivary gland proteins in three Phlebotomus species. Acta Trop. 2012; 122, 80–86. 10.1016/j.actatropica.2011.12.004 PubMed DOI

Aransay AM, Scoulica E, Tselentis Y, Ready PD. Phylogenetic relationships of Phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA. Insect Mol Biol. 2000;9: 157–168. PubMed

Hofinger ESA, Spickenreither M, Oschmann J, Bernhardt G, Rudolph R, Buschauer A. Recombinant human hyaluronidase Hyal-1: insect cells versus Escherichia coli as expression system and identification of low molecular weight inhibitors. Glycobiology. 2007; 17: 444–453. 10.1093/glycob/cwm003 PubMed DOI

Reddy VB, Kounga K, Mariano F, Lerner EA. Chrysoptin is a potent glycoprotein IIb/IIIa fibrinogen receptor antagonist present in salivary gland extracts of the deerfly. J Biol Chem. 2000;275: 15861–15867. PubMed

Atta A, Colossi R, Sousa-Atta MLB, Jeronimo SMB, Nascimento MDSB, Bezerra GF, et al. Antileishmanial IgG and IgE antibodies recognize predominantly carbohydrate epitopes of glycosylated antigens in visceral leishmaniasis. Mem Inst Oswaldo Cruz. 2004;99: 525–530. PubMed

Volf P, Tesarova P, Nohynkova E. Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Med Vet Entomol. 2000;14: 251–256. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...