Inward rectifying potassium currents resolved into components: modeling of complex drug actions

. 2018 Feb ; 470 (2) : 315-325. [epub] 20170926

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28948353

Grantová podpora
16-30571A Ministerstvo Zdravotnictví Ceské Republiky - International

Odkazy

PubMed 28948353
DOI 10.1007/s00424-017-2071-2
PII: 10.1007/s00424-017-2071-2
Knihovny.cz E-zdroje

Inward rectifier potassium currents (I Kir,x) belong to prominent ionic currents affecting both resting membrane voltage and action potential repolarization in cardiomyocytes. In existing integrative models of electrical activity of cardiac cells, they have been described as single current components. The proposed quantitative model complies with findings indicating that these channels are formed by various homomeric or heteromeric assemblies of channel subunits with specific functional properties. Each I Kir,x may be expressed as a total of independent currents via individual populations of identical channels, i.e., channels formed by the same combination of their subunits. Solution of the model equations simulated well recently observed unique manifestations of dual ethanol effect in rat ventricular and atrial cells. The model reflects reported occurrence of at least two binding sites for ethanol within I Kir,x channels related to slow allosteric conformation changes governing channel conductance and inducing current activation or inhibition. Our new model may considerably improve the existing models of cardiac cells by including the model equations proposed here in the particular case of the voltage-independent drug-channel interaction. Such improved integrative models may provide more precise and, thus, more physiologically relevant results.

Zobrazit více v PubMed

Int J Mol Sci. 2013 Dec 13;14(12):24271-92 PubMed

J Physiol Pharmacol. 2014 Aug;65(4):497-509 PubMed

J Physiol. 2008 Apr 1;586(7):1833-48 PubMed

Eur Biophys J. 2012 Jun;41(6):491-503 PubMed

Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1378-403 PubMed

Mol Pharmacol. 2001 Oct;60(4):700-11 PubMed

Eur J Pharmacol. 2011 Oct 1;668(1-2):72-7 PubMed

Pflugers Arch. 2011 Oct;462(4):505-17 PubMed

Prog Biophys Mol Biol. 2007 Jul;94(3):320-35 PubMed

Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18309-14 PubMed

Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15631-6 PubMed

Biophys J. 2004 Sep;87(3):1507-25 PubMed

J Cardiovasc Pharmacol. 2008 Aug;52(2):129-35 PubMed

J Physiol Pharmacol. 2016 Jun;67(3):339-51 PubMed

Br J Clin Pharmacol. 2008 Nov;66(5):594-617 PubMed

J Physiol. 2001 Apr 1;532(Pt 1):115-26 PubMed

Cardiovasc Res. 2011 Mar 1;89(4):862-9 PubMed

Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):258-80 PubMed

Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2296-308 PubMed

Circulation. 1998 Dec 1;98(22):2422-8 PubMed

Prog Biophys Mol Biol. 2003 Jan;81(1):67-79 PubMed

Circ Res. 2004 May 28;94(10):1332-9 PubMed

Biochemistry. 2006 Jul 18;45(28):8599-606 PubMed

J Pharmacol Exp Ther. 2003 Oct;307(1):42-52 PubMed

Nature. 2011 Aug 28;477(7365):495-8 PubMed

J Physiol. 2007 Jul 15;582(Pt 2):675-93 PubMed

Physiol Rev. 2010 Jan;90(1):291-366 PubMed

Nat Neurosci. 2009 Aug;12(8):988-95 PubMed

J Physiol. 2003 Jul 15;550(Pt 2):365-72 PubMed

J Cardiovasc Pharmacol. 2012 Jan;59(1):37-48 PubMed

J Biol Chem. 2012 Dec 7;287(50):42278-87 PubMed

Cardiovasc Res. 2014 Nov 1;104(2):337-46 PubMed

Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 PubMed

Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):357-76 PubMed

Naunyn Schmiedebergs Arch Pharmacol. 2016 Oct;389(10 ):1049-58 PubMed

PLoS Comput Biol. 2012;8(10):e1002710 PubMed

J Gen Physiol. 2005 Dec;126(6):541-9 PubMed

PLoS Comput Biol. 2011 May;7(5):e1002061 PubMed

J Physiol. 2005 Mar 15;563(Pt 3):725-44 PubMed

EMBO J. 2007 Sep 5;26(17):4005-15 PubMed

Acta Physiol (Oxf). 2010 Dec;200(4):301-14 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace