Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte

. 2013 Dec 13 ; 14 (12) : 24271-92. [epub] 20131213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24351816

We have developed a computer model of human cardiac ventricular myocyte (CVM), including t-tubular and cleft spaces with the aim of evaluating the impact of accumulation-depletion of ions in restricted extracellular spaces on transmembrane ion transport and ionic homeostasis in human CVM. The model was based on available data from human CVMs. Under steady state, the effect of ion concentration changes in extracellular spaces on [Ca2+]i-transient was explored as a function of critical fractions of ion transporters in t-tubular membrane (not documented for human CVM). Depletion of Ca2+ and accumulation of K+ occurring in extracellular spaces slightly affected the transmembrane Ca2+ flux, but not the action potential duration (APD90). The [Ca2+]i-transient was reduced (by 2%-9%), depending on the stimulation frequency, the rate of ion exchange between t-tubules and clefts and fractions of ion-transfer proteins in the t-tubular membrane. Under non-steady state, the responses of the model to changes of stimulation frequency were analyzed. A sudden increase of frequency (1-2.5 Hz) caused a temporal decrease of [Ca2+] in both extracellular spaces, a reduction of [Ca2+]i-transient (by 15%) and APD90 (by 13 ms). The results reveal different effects of activity-related ion concentration changes in human cardiac t-tubules (steady-state effects) and intercellular clefts (transient effects) in the modulation of membrane ion transport and Ca2+ turnover.

Zobrazit více v PubMed

Courtemanche M., Ramirez R.J., Nattel S. Ionic mechanisms underlying human atrial action potential properties: Insight from a mathematical model. Am. J. Physiol. 1998;275:301–321. PubMed

Nygren A., Fiset C., Firek L., Clark J.W., Lindblad D.S., Clark R.B., Giles W.R. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 1998;82:63–81. PubMed

Priebe L., Beuckelmann D.J. Simulation study of cellular electric properties in heart failure. Circ. Res. 1998;82:1206–1223. PubMed

Ten Tusscher K.H.W.J., Noble D., Noble P.J., Panfilov A.V. A model for human ventricular tissue. Am. J. Physiol. 2004;286:1573–1589. PubMed

Iyer V., Mazhari R., Winslow R.L. A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 2004;87:1507–1525. PubMed PMC

Fink M., Noble D., Virag L., Varro A., Giles W.R. Contributions of HERG K+ current to repolarization of the human ventricular action potential. Prog. Biophys. Mol. Biol. 2008;96:357–376. PubMed

Grandi E., Pasqualini F.S., Bers D.M. A novel computational model of the human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 2010;48:112–121. PubMed PMC

O’Hara T., Virág L., Varró A., Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput. Biol. 2011;7:e1002061. PubMed PMC

Hilgemann D.W., Noble D. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: Reconstruction of basic cellular mechanisms. Proc. R. Soc. Lond. 1987;230:163–205. PubMed

Hilgemann D.W. Extracellular calcium transients and action potential configuration changes related to post-stimulatory potentiation in rabbit atrium. J. Gen. Physiol. 1986;87:675–706. PubMed PMC

Hilgemann D.W. Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol. 1986;87:707–735. PubMed PMC

Pásek M., Christé G., Šimurda J. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system. Gen. Physiol. Biophys. 2003;22:355–368. PubMed

Pásek M., Šimurda J., Christé G. The functional role of cardiac T-tubules explored in a model of rat ventricular myocytes. Philos. Trans. R. Soc. A. 2006;364:1187–1206. PubMed

Pásek M., Šimurda J., Orchard C.H., Christé G. A model of the guinea-pig ventricular cardiomyocyte incorporating a transverse-axial tubular system. Prog. Biophys. Mol. Biol. 2008;96:258–280. PubMed

Ohler A., Weisser-Thomas J., Piacentino V., Houser S.R., Tomaselli G.F., O’Rourke B. Two-photon laser scanning microscopy of the transverse-axial tubule system in ventricular cardiomyocytes from failing and non-failing human hearts. Cardiol. Res. Pract. 2009 doi: 10.4061/2009/802373. PubMed DOI PMC

Pásek M., Šimurda J., Orchard C.H. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. Eur. Biophys. J. 2012;41:491–503. PubMed

Pásek M., Šimurda J., Christé G., Orchard C.H. Modelling the cardiac transverse–axial tubular system. Prog. Biophys. Mol. Biol. 2008;96:226–243. PubMed

Shepherd N., McDonough H.B. Ionic diffusion in transverse tubules of cardiac ventricular myocytes. Am. J. Physiol. 1998;275:852–860. PubMed

Brette F., Salle L., Orchard C.H. Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circ. Res. 2004;95:1–7. PubMed

Kunze D.L. Rate-dependent changes in extracellular potassium in the rabbit atrium. Circ. Res. 1977;41:122–127. PubMed

Attwell D., Cohen I., Eisner D.A. The effects of heart rate on the action potential of guinea-pig and human ventricular muscle. J. Physiol. 1981;313:439–461. PubMed PMC

Hilgemann D.W., Langer G.A. Transsarcolemmal calcium movements in arterially perfused rabbit right ventricle measured with extracellular calcium-sensitive dyes. Circ. Res. 1984;54:461–467. PubMed

Almers W. Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle. Fed. Proc. 1980;39:1527–1532. PubMed

Almers W., Fink R., Palade P.T. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol. 1981;312:177–207. PubMed PMC

Li G.R., Feng J., Yue L., Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am. J. Physiol. 1998;275:369–377. PubMed

Li G.R., Yang B., Feng J., Bosch R.F., Carrier M., Nattel S. Transmembrane ICa contributes to rate-dependent changes of action potentials in human ventricular myocytes. Am. J. Physiol. 1999;276:98–106. PubMed

Schmidt U., Hajjar R.J., Helm P.A., Kim C.S., Doye A.A., Gwathmey J.A. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J. Mol. Cell. Cardiol. 1998;30:1929–1937. PubMed

Pieske B., Maier L.S., Piacentino V., Weisser J., Hasenfuss G., Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation. 2002;106:447–453. PubMed

Beuckelmann D.J., Näbauer M., Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 1992;88:1046–1055. PubMed

Pieske B., Houser S.R. [Na+]i handling in the failing human heart. Cardiovasc. Res. 2003;57:874–886. PubMed

Brette F., Orchard C.H. T-tubule function in mammalian cardiac myocytes. Circ. Res. 2003;92:1182–1192. PubMed

Orchard C.H., Pásek M., Brette F. The role of mammalian cardiac t-tubules in excitation-contraction coupling: Experimental and computational approaches. Exp. Physiol. 2009;94:509–519. PubMed

Wei S., Guo A., Chen B., Kutschke W., Xie Y.P., Zimmerman K., Weiss R.M., Anderson M.E., Cheng H., Song L.S. T-tubule remodeling during transition from hypertrophy to heart failure. Circ. Res. 2010;107:520–531. PubMed PMC

He J., Conklin M.W., Foell J.D., Wolff M.R., Haworth R.A., Coronado R., Kamp T.J. Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia induced heart failure. Cardiovasc. Res. 2001;49:298–307. PubMed

Louch W.E., Bito V., Heinzel F.R., Macianskiene R., Vanhaecke J., Flameng W., Mubagwa K., Sipido K.R. Reduced synchrony of Ca2+ release with loss of T-tubules—A comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc. Res. 2004;62:63–73. PubMed

Kaprielian R.R., Stevenson S., Rothery S.M., Cullen M.J., Severs N.J. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation. 2000;101:2586–2594. PubMed

Wong C., Soeller C., Burton L., Cannell M. Changes in transverse-tubular system architecture in myocytes from diseased human ventricles. Biophys. J. 2001;80:588A.

Lyon A.R., MacLeod K.T., Zhang Y., Garcia E., Kanda G.K., Lab M.J., Korchev Y.E., Harding S.E., Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc. Natl. Acad. Sci. USA. 2009;106:6854–6859. PubMed PMC

Ferrantini C., Crocini C., Coppini R., Vanzi F., Tesi C., Cerbai E., Poggesi C., Pavone F.S., Sacconi L. The transverse-axial tubular system of cardiomyocytes. Cell. Mol. Life Sci. 2013;70:4695–4710. PubMed PMC

Cannell M.B., Crossman D.J., Soeller C. Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J. Muscle Res. Cell. Motil. 2006;27:297–306. PubMed

Maron B.J., Ferrans V.J., Roberts W.C. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am. J. Pathol. 1975;79:387–434. PubMed PMC

Balijepalli R.C., Lokuta A.J., Maertz N.A., Buck J.M., Haworth R.A., Valdivia H.H., Kamp T.J. Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc. Res. 2003;59:67–77. PubMed

Prinz C., Farr M., Laser K.T., Esdorn H., Piper C., Horstkotte D., Faber L. Determining the role of fibrosis in hypertrophic cardiomyopathy. Expert Rev. Cardiovasc Ther. 2013;11:495–504. PubMed

Franzini–Armstrong C., Protasi F., Tijskens P. The assembly of calcium release units in cardiac muscle. Ann. N.Y. Acad. Sci. 2005;1047:76–85. PubMed

Šimurda J., Pásek M., Christé G., Šimurdova M. Modelling the distribution of [Ca2+] within the cardiac T–tubule—Effects of Ca2+ current distribution and changes in extracellular [Ca2+] (Abstract) J. Physiol. 2004;561:PC5.

Dyachenko V., Christ A., Gubanov R., Isenberg G. Bending of z–lines by mechanical stimuli: An input signal for integrin dependent modulation of ion channels? Prog. Biophys. Mol. Biol. 2008;97:196–216. PubMed

McNary T.G., Spitzer K.W., Holloway H., Bridge J.H., Kohl P., Sachse F.B. Mechanical modulation of the transverse tubular system of ventricular cardiomyocytes. Prog. Biophys. Mol. Biol. 2012;110:218–225. PubMed PMC

Tidball J.G., Smith R., Shattock M.J., Bers D.M. Differences in action potential configuration in ventricular trabeculae correlate with differences in density of transverse tubule–sarcoplasmic reticulum couplings. J. Mol. Cell. Cardiol. 1988;20:539–546. PubMed

Tidball J.G., Cederdahl J.E., Bers D.M. Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell Tissue Res. 1991;264:293–298. PubMed

Fowler M.R., Dobson R.S., Orchard C.H., Harrison S.M. Functional consequences of detubulation of isolated rat ventricular myocytes. Cardiovasc. Res. 2004;62:529–537. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...