Fraction of the T-Tubular Membrane as an Important Parameter in Cardiac Cellular Electrophysiology: A New Way of Estimation

. 2022 ; 13 () : 837239. [epub] 20220510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35620609

The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.

Zobrazit více v PubMed

Adrian R. H., Chandler W. K., Hodgkin A. L. (1969). The Kinetics of Mechanical Activation in Frog Muscle. J. Physiol. 204, 207–230. 10.1113/jphysiol.1969.sp008909 PubMed DOI PMC

Amsellem J., Delorme R., Souchier C., Ojeda C. (1995). Transverse-axial Tubular System in guinea Pig Ventricular Cardiomyocyte: 3D Reconstruction, Quantification and its Possible Role in K+ Accumulation-Depletion Phenomenon in Single Cells. Biol. Cel 85, 43–54. 10.1111/j.1768-322x.1995.tb00941.x PubMed DOI

Bébarová M., Matejovič P., Pásek M., Šimurdová M., Šimurda J. (2005). Effect of Ajmaline on Transient Outward Current in Rat Ventricular Myocytes. Gen. Physiol. Biophys. 24, 27–45. PubMed

Bébarová M., Matejovič P., Pásek M., Hořáková Z., Hošek J., Šimurdová M., et al. (2016). Effect of Ethanol at Clinically Relevant Concentrations on Atrial Inward Rectifier Potassium Current Sensitive to Acetylcholine. Naunyn Schmiedebergs Arch. Pharmacol. 389, 1049–1058. 10.1007/s00210-016-1265-z PubMed DOI

Bouchard R., Clark R. B., Juhasz A. E., Giles W. R. (2004). Changes in Extracellular K+concentration Modulate Contractility of Rat and Rabbit Cardiac Myocytes via the Inward Rectifier K+currentIK1. J. Physiol. 556, 773–790. 10.1113/jphysiol.2003.058248 PubMed DOI PMC

Bourcier A., Barthe M., Bedioune I., Lechêne P., Miled H. B., Vandecasteele G., et al. (2019). Imipramine as an Alternative to Formamide to Detubulate Rat Ventricular Cardiomyocytes. Exp. Physiol. 104, 1237–1249. 10.1113/EP087760 PubMed DOI

Brette F., Komukai K., Orchard C. H. (2002). Validation of Formamide as a Detubulation Agent in Isolated Rat Cardiac Cells. Am. J. Physiology-Heart Circulatory Physiol. 283, H1720–H1728. 10.1152/ajpheart.00347.2002 PubMed DOI

Brette F., Orchard C. H. (2006). Density and Sub-cellular Distribution of Cardiac and Neuronal Sodium Channel Isoforms in Rat Ventricular Myocytes. Biochem. Biophys. Res. Commun. 348, 1163–1166. 10.1016/j.bbrc.2006.07.189 PubMed DOI

Brette F., Sallé L., Orchard C. H. (2006). Quantification of Calcium Entry at the T-Tubules and Surface Membrane in Rat Ventricular Myocytes. Biophysical J. 90, 381–389. 10.1529/biophysj.105.069013 PubMed DOI PMC

Bryant S. M., Kong C. H. T., Watson J., Cannell M. B., James A. F., Orchard C. H. (2015). Altered Distribution of ICa Impairs Ca Release at the T-Tubules of Ventricular Myocytes from Failing Hearts. J. Mol. Cell Cardiol. 86, 23–31. 10.1016/j.yjmcc.2015.06.012 PubMed DOI PMC

Caldwell J. L., Smith C. E. R., Taylor R. F., Kitmitto A., Eisner D. A., Dibb K. M., et al. (2014). Dependence of Cardiac Transverse Tubules on the BAR Domain Protein Amphiphysin II (BIN-1). Circ. Res. 115, 986–996. 10.1161/CIRCRESAHA.116.303448 PubMed DOI PMC

Cheng L.-F., Wang F., Lopatin A. N. (2011). Metabolic Stress in Isolated Mouse Ventricular Myocytes Leads to Remodeling of T Tubules. Am. J. Physiology-Heart Circulatory Physiol. 301, H1984–H1995. 10.1152/ajpheart.00304.2011 PubMed DOI PMC

Crossman D. J., Ruygrok P. R., Soeller C., Cannell M. B. (2011). Changes in the Organization of Excitation-Contraction Coupling Structures in Failing Human Heart. PLoS ONE 6, e17901. 10.1371/journal.pone.0017901 PubMed DOI PMC

Crossman D. J., Jayasinghe I. D., Soeller C. (2017). Transverse Tubule Remodelling: a Cellular Pathology Driven by Both Sides of the Plasmalemma? Biophys. Rev. 9, 919–929. 10.1007/s12551-017-0273-7 PubMed DOI PMC

Dibb K. M., Clarke J. D., Horn M. A., Richards M. A., Graham H. K., Eisner D. A., et al. (2009). Characterization of an Extensive Transverse Tubular Network in Sheep Atrial Myocytes and its Depletion in Heart Failure. Circ. Heart Fail. 2, 482–489. 10.1161/CIRCHEARTFAILURE.109.852228 PubMed DOI

Dibb K. M., Clarke J. D., Eisner D. A., Richards M. A., Trafford A. W. (2013). A Functional Role for Transverse (T-) Tubules in the Atria. J. Mol. Cell Cardiol. 58, 84–91. 10.1016/j.yjmcc.2012.11.001 PubMed DOI

Dibb K. M., Louch W. E., Trafford A. W. (2022). Cardiac Transverse Tubules in Physiology and Heart Failure. Annu. Rev. Physiol. 84, 229–255. 10.1146/annurev-physiol-061121-040148 PubMed DOI

Eisenberg R. S., Vaughan P. C., Howell J. N. (1972). A Theoretical Analysis of the Capacitance of Muscle Fibers Using a Distributed Model of the Tubular System. J. Gen. Physiol. 59, 360–373. 10.1085/jgp.59.3.360 PubMed DOI PMC

Frisk M., Koivumäki J. T., Norseng P. A., Maleckar M. M., Sejersted O. M., Louch W. E. (2014). Variable T-Tubule Organization and Ca2+ Homeostasis across the Atria. Am. J. Physiology-Heart Circulatory Physiol. 307, H609–H620. 10.1152/ajpheart.00295.2014 PubMed DOI

Glukhov A. V., Balycheva M., Sanchez-Alonso J. L., Ilkan Z., Alvarez-Laviada A., Bhogal N., et al. (2015). Direct Evidence for Microdomain-specific Localization and Remodeling of Functional L-type Calcium Channels in Rat and Human Atrial Myocytes. Circulation 132, 2372–2384. 10.1161/CIRCULATIONAHA.115.018131 PubMed DOI PMC

Guo A., Song L.-S. (2014). AutoTT: Automated Detection and Analysis of T-Tubule Architecture in Cardiomyocytes. Biophysical J. 106, 2729–2736. 10.1016/j.bpj.2014.05.013 PubMed DOI PMC

Guo A., Zhang C., Wei S., Chen B., Song L.-S. (2013). Emerging Mechanisms of T-Tubule Remodelling in Heart Failure. Cardiovasc. Res. 98, 204–215. 10.1093/cvr/cvt020 PubMed DOI PMC

Heinzel F. R., Bito V., Biesmans L., Wu M., Detre E., von Wegner F., et al. (2008). Remodeling of T-Tubules and Reduced Synchrony of Ca 2+ Release in Myocytes from Chronically Ischemic Myocardium. Circ. Res. 102, 338–346. 10.1161/CIRCRESAHA.107.160085 PubMed DOI

Hong T., Shaw R. M. (2017). Cardiac T-Tubule Microanatomy and Function. Physiol. Rev. 97, 227–252. 10.1152/physrev.00037.2015 PubMed DOI PMC

Hrabcová D., Pásek M., Šimurda J., Christé G. (2013). Effect of Ion Concentration Changes in the Limited Extracellular Spaces on Sarcolemmal Ion Transport and Ca2+ Turnover in a Model of Human Ventricular Cardiomyocyte. Int. J. Mol. Sci. 14, 24271–24292. 10.3390/ijms141224271 PubMed DOI PMC

Ibrahim M., Gorelik J., Yacoub M. H., Terracciano C. M. (2011). The Structure and Function of Cardiac T-Tubules in Health and Disease. Proc. R. Soc. B. 278, 2714–2723. 10.1098/rspb.2011.0624 PubMed DOI PMC

Jayasinghe I., Crossman D., Soeller C., Cannell M. (2012). Comparison of the Organization of T-Tubules, Sarcoplasmic Reticulum and Ryanodine Receptors in Rat and Human Ventricular Myocardium. Clin. Exp. Pharmacol. Physiol. 39, 469–476. 10.1111/j.1440-1681.2011.05578.x PubMed DOI

Kanda M., Omori Y., Shinoda S., Yamauchi T., Tamemoto H., Kawakami M., et al. (2004). SIADH Closely Associated with Non-functioning Pituitary Adenoma. Endocr. J. 51, 435–438. 10.1507/endocrj.51.435 PubMed DOI

Kawai M., Hussain M., Orchard C. H. (1999). Excitation-contraction Coupling in Rat Ventricular Myocytes after Formamide-Induced Detubulation. Am. J. Physiology-Heart Circulatory Physiol. 277, H603–H609. 10.1152/ajpheart.1999.277.2.H603 PubMed DOI

Komukai K., Yamanushi T., Orchard C., Brette F. (2002). K + Current Distribution in Rat Sub-epicardial Ventricular Myocytes. Pflugers Archiv Eur. J. Physiol. 444, 532–538. 10.1007/s00424-002-0851-8 PubMed DOI

Louch W., Bito V., Heinzel F. R., Macianskiene R., Vanhaecke J., Flameng W., et al. (2004). Reduced Synchrony of Ca2+ Release with Loss of T-Tubules-A Comparison to Ca2+ Release in Human Failing Cardiomyocytes. Cardiovasc. Res. 62, 63–73. 10.1016/j.cardiores.2003.12.031 PubMed DOI

Mathias R. T., Eisenberg R. S., Valdiosera R. (1977). Electrical Properties of Frog Skeletal Muscle Fibers Interpreted with a Mesh Model of the Tubular System. Biophysical J. 17, 57–93. 10.1016/s0006-3495(77)85627-0 PubMed DOI PMC

Moench I., Meekhof K. E., Cheng L. F., Lopatin A. N. (2013). Resolution of Hyposmotic Stress in Isolated Mouse Ventricular Myocytes Causes Sealing of T-Tubules. Exp. Physiol. 98, 1164–1177. 10.1113/expphysiol.2013.072470 PubMed DOI PMC

Ohler A., Weisser-Thomas J., Piacentino V., Houser S. R., Tomaselli G. F., O'Rourke B. (2009). Two-photon Laser Scanning Microscopy of the Transverse-Axial Tubule System in Ventricular Cardiomyocytes from Failing and Non-failing Human Hearts. Cardiol. Res. Pract. 2009, 1–9. 10.4061/2009/802373 PubMed DOI PMC

Orchard C. H., Pásek M., Brette F. (2009). The Role of Mammalian Cardiac T-Tubules in Excitation-Contraction Coupling: Experimental and Computational Approaches. Exp. Physiol. 94, 509–519. 10.1113/expphysiol.2008.043984 PubMed DOI

Pásek M., Šimurda J., Christé G. (2006). The Functional Role of Cardiac T-Tubules Explored in a Model of Rat Ventricular Myocytes. Phil. Trans. R. Soc. A. Math. Phys. Eng. Sci. 364, 1187–1206. 10.1098/rsta.2006.1764 PubMed DOI

Pásek M., Šimurda J., Christé G., Orchard C. H. (2008a). Modelling the Cardiac Transverse-Axial Tubular System. Prog. Biophys. Mol. Biol. 96, 226–243. 10.1016/j.pbiomolbio.2007.07.021 PubMed DOI

Pásek M., Brette F., Nelson A., Pearce C., Qaiser A., Christe G., et al. (2008b). Quantification of T-Tubule Area and Protein Distribution in Rat Cardiac Ventricular Myocytes. Prog. Biophys. Mol. Biol. 96, 244–257. 10.1016/j.pbiomolbio.2007.07.016 PubMed DOI

Pásek M., Šimurda J., Orchard C. H., Christé G. (2008c). A Model of the guinea-pig Ventricular Cardiac Myocyte Incorporating a Transverse-Axial Tubular System. Prog. Biophys. Mol. Biol. 96, 258–280. 10.1016/j.pbiomolbio.2007.07.022 PubMed DOI

Pásek M., Šimurda J., Orchard C. H. (2012). Role of T-Tubules in the Control of Trans-sarcolemmal Ion Flux and Intracellular Ca2+ in a Model of the Rat Cardiac Ventricular Myocyte. Eur. Biophys. J. 41, 491–503. 10.1007/s00249-012-0804-x PubMed DOI

Penderson T. H., Huang C. L-H., Fraser J. A. (2011). An Analysis of the Relationships between Subthreshold Electrical Properties and Excitability in Skeletal Muscle. J. Gen. Physiol. 138, 73–93. 10.1085/jgp.201010510 PubMed DOI PMC

Richards M. A., Clarke J. D., Saravanan P., Voigt N., Dobrev D., Eisner D. A., et al. (2011). Transverse Tubules Are a Common Feature in Large Mammalian Atrial Myocytes Including Human. Am. J. Physiology-Heart Circulatory Physiol. 301, H1996–H2005. 10.1152/ajpheart.00284.2011 PubMed DOI PMC

Rog-Zielinska E. A., Moss R., Kaltenbacher W., Greiner J., Verkade P., Seemann G., et al. (2021). Nano-scale Morphology of Cardiomyocyte T-Tubule/sarcoplasmic Reticulum Junctions Revealed by Ultra-rapid High-Pressure Freezing and Electron Tomography. J. Mol. Cell Cardiol. 153, 86–92. 10.1016/j.yjmcc.2020.12.006 PubMed DOI PMC

Scardigli M., Crocini C., Ferrantini C., Gabbrielli T., Silvestri L., Coppini R., et al. (2017). Quantitative Assessment of Passive Electrical Properties of the Cardiac T-Tubular System by FRAP Microscopy. Proc. Natl. Acad. Sci. U.S.A. 114, 5737–5742. 10.1073/pnas.1702188114 PubMed DOI PMC

Setterberg I. E., Le C., Frisk M., Perdreau-Dahl H., Li J., Louch W. E. (2021). The Physiology and Pathophysiology of T-Tubules in the Heart. Front. Physiol. 12, 718404. 10.3389/fphys.2021.718404 PubMed DOI PMC

Shepherd N., McDonough H. B. (1998). Ionic Diffusion in Transverse Tubules of Cardiac Ventricular Myocytes. Am. J. Physiology-Heart Circulatory Physiol. 275, H852–H860. 10.1152/ajpheart.1998.275.3.H852 PubMed DOI

Silveira M. A. D., Seguro A. C., da Silva J. B., Arantes de Oliveira M. F., Seabra V. F., Reichert B. V., et al. (2018). Chronic Hyponatremia Due to the Syndrome of Inappropriate Antidiuresis (SIAD) in an Adult Woman with Corpus Callosum Agenesis (CCA). Am. J. Case Rep. 19, 1345–1349. 10.12659/AJCR.911810 PubMed DOI PMC

Šimurda J., Šimurdová M., Švecová O., Bébarová M. (2021). A New Approach to the Determination of Tubular Membrane Capacitance: Passive Membrane Electrical Properties under Reduced Electrical Conductivity of the Extracellular Solution. bioRxiv preprint. 10.1101/2021.11.12.468264 PubMed DOI PMC

Smith C., Trafford A., Caldwell J., Dibb K. (2018). Physiology and Patho-Physiology of the Cardiac Transverse Tubular System. Curr. Opin. Physiol. 1, 153–160. 10.1016/j.cophys.2017.11.002 DOI

Smyrnias I., Mair W., Harzheim D., Walker S. A., Roderick H. L., Bootman M. D. (2010). Comparison of the T-Tubule System in Adult Rat Ventricular and Atrial Myocytes, and its Role in Excitation-Contraction Coupling and Inotropic Stimulation. Cell Calcium 47, 210–223. 10.1016/j.ceca.2009.10.001 PubMed DOI

Soeller C., Cannell M. B. (1999). Examination of the Transverse Tubular System in Living Cardiac Rat Myocytes by 2-photon Microscopy and Digital Image-Processing Techniques. Circ. Res. 84, 266–275. 10.1161/01.res.84.3.266 PubMed DOI

Uchida K., Lopatin A. N. (2018). Diffusional and Electrical Properties of T-Tubules Are Governed by Their Constrictions and Dilations. Biophys. J. 114, 437–449. 10.1016/j.bpj.2017.11.3742 PubMed DOI PMC

Vaughan P. C., Howell J. N., Eisenberg R. S. (1972). The Capacitance of Skeletal Muscle Fibers in Solutions of Low Ionic Strength. J. Gen. Physiol. 59, 347–359. 10.1085/jgp.59.3.347 PubMed DOI PMC

Wagner E., Lauterbach M. A., Kohl T., Westphal V., Williams G. S. B., Steinbrecher J. H., et al. (2012). Stimulated Emission Depletion Live-Cell Super-resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures after Myocardial Infarction. Circ. Res. 111, 402–414. 10.1161/CIRCRESAHA.112.274530 PubMed DOI PMC

Wakili R., Yeh Y.-H., Yan Qi X., Greiser M., Chartier D., Nishida K., et al. (2010). Multiple Potential Molecular Contributors to Atrial Hypocontractility Caused by Atrial Tachycardia Remodeling in Dogs. Circ. Arrhythmia Electrophysiol. 3, 530–541. 10.1161/CIRCEP.109.933036 PubMed DOI

Walden A. P., Dibb K. M., Trafford A. W. (2009). Differences in Intracellular Calcium Homeostasis between Atrial and Ventricular Myocytes. J. Mol. Cell Cardiol. 46, 463–473. 10.1016/j.yjmcc.2008.11.003 PubMed DOI

Yue X., Zhang R., Kim B., Ma A., Philipson K. D., Goldhaber J. I. (2017). Heterogeneity of Transverse-Axial Tubule System in Mouse Atria: Remodeling in Atrial-specific Na + -Ca 2+ Exchanger Knockout Mice. J. Mol. Cell Cardiol. 108, 50–60. 10.1016/j.yjmcc.2017.05.008 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace