A new approach to the determination of tubular membrane capacitance: passive membrane electrical properties under reduced electrical conductivity of the extracellular solution
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36239778
PubMed Central
PMC9663357
DOI
10.1007/s00424-022-02756-x
PII: 10.1007/s00424-022-02756-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiomyocyte, Novel method, Sucrose, Tubular membrane capacitance, Tubular system,
- MeSH
- elektrická vodivost MeSH
- kardiomyocyty * MeSH
- krysa rodu Rattus MeSH
- osmotický tlak MeSH
- sacharosa MeSH
- spřažení excitace a kontrakce * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sacharosa MeSH
The transverse-axial tubular system (tubular system) of cardiomyocytes plays a key role in excitation-contraction coupling. To determine the area of the tubular membrane in relation to the area of the surface membrane, indirect measurements through the determination of membrane capacitances are currently used in addition to microscopic methods. Unlike existing electrophysiological methods based on an irreversible procedure (osmotic shock), the proposed new approach uses a reversible short-term intermittent increase in the electrical resistance of the extracellular medium. The resulting increase in the lumen resistance of the tubular system makes it possible to determine separate capacitances of the tubular and surface membranes. Based on the analysis of the time course of the capacitive current, computational relations were derived to quantify the elements of the electrical equivalent circuit of the measured cardiomyocyte including both capacitances. The exposition to isotonic low-conductivity sucrose solution is reversible which is the main advantage of the proposed approach allowing repetitive measurements on the same cell under control and sucrose solutions. Experiments on rat ventricular cardiomyocytes (n = 20) resulted in the surface and tubular capacitance values implying the fraction of tubular capacitance/area of 0.327 ± 0.018. We conclude that the newly proposed method provides results comparable to the data obtained by the currently used detubulation method and, in addition, by being reversible, allows repeated evaluation of surface and tubular membrane parameters on the same cell.
Zobrazit více v PubMed
Bébarová M, Mateovič P, Pásek M, Šimurdová M, Šimurda J. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes. J Physiol Pharmacol. 2014;65:497–509. PubMed
Brette F, Komukai K, Orchard CH. Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol. 2002;283:H1720–H1728. doi: 10.1152/ajpheart.00347.2002. PubMed DOI
Brette F, Orchard CH. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92:1182–1192. doi: 10.1161/01.RES.0000074908.17214.FD. PubMed DOI
Brette F, Orchard CH. Resurgence of cardiac t-tubule research. Physiology (Bethesda) 2007;22:167–173. doi: 10.1152/physiol.00005.2007. PubMed DOI
Bryant SM, Kong CHT, Watson J, Cannell MB, James AF, Orchard CH. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23–31. doi: 10.1016/j.yjmcc.2015.06.012. PubMed DOI PMC
Coddington EA, Levinson N. Theory of ordinary differential equations. New York: McGraw-Hill; 1955.
Despa S, Brette F, Orchard CH, Bers DM. Na/Ca Exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocyte. Biophys J. 2003;85:3388–3396. doi: 10.1016/S0006-3495/03/11/3388/09. PubMed DOI PMC
Kawai M, Hussain M, Orchard CH. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Physiol. 1999;277:H603–H609. PubMed
Kong CHT, Rog-Zielinska EA, Orchard CH, Kohl P, Cannell MB. Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method. J Mol Cell Cardiol. 2017;108:1–7. doi: 10.1016/j.yjmcc.2017.05.003. PubMed DOI PMC
Kotowski J, Tien HT. Sucrose influence on lecithin and polypyrrole lecithin bilayer membranes. Bioelectmchemistry Bioenerg. 1989;22:69–74. doi: 10.1016/0302-4598(89)85031-7. DOI
Moench I, Meekhof KE, Cheng LF, Lopatin AN. Resolution of hypo-osmotic stress in isolated mouse ventricular myocytes causes sealing of t-tubules. Exp Physiol. 2013;98(7):1164–1177. doi: 10.1113/expphysiol.2013.072470. PubMed DOI PMC
Pásek M, Šimurda J, Orchard CH, Christé G. A model of guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Prog Biophys Mol Biol. 2008;96:258–280. doi: 10.1016/j.pbiomolbio.2007.07.022. PubMed DOI
Pásek M, Brette F, Nelson A, Pearce C, Qaiser A, Christe G, Orchard CH. Quantification of t-tubule area and protein distribution in rat cardiac ventricular myocytes. Prog Biophys Mol Biol. 2008;96(1–3):244–257. doi: 10.1016/j.pbiomolbio.2007.07.016. PubMed DOI
Scardigli M, Crocini C, Ferrantini C, Gabbrielli T, Silvestri L, Coppini R, Tesi C, Rog-Zielinska EA, Kohl P, Cerbai E, Poggesi C, Pavone FS, Sacconi L. Quantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP microscopy. Proc Natl Acad Sci USA. 2017;114(22):5737–5742. doi: 10.1073/pnas.1702188114. PubMed DOI PMC
Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image–processing techniques. Circ Res. 1999;84:266–275. doi: 10.1161/01.RES.84.3.266. PubMed DOI
Stachura SS, Malajczuk CJ, Mancera RL. Does sucrose change its mechanism of stabilization of lipid bilayers during desiccation? Influences of hydration and concentration. Langmuir. 2019;35:15389–15400. doi: 10.1021/acs.langmuir.9b03086. PubMed DOI
Švecová O, Bébarová M, Šimurdová M, Šimurda J. Fraction of the t-tubular membrane as an important parameter in cardiac cellular electrophysiology: a new way of estimation. Front Physiol. 2022;13:837239. doi: 10.3389/fphys2022.837239. PubMed DOI PMC
Takashima S. Passive electrical properties and voltage dependent membrane capacitance of single skeletal muscle fibers. Pflügers Arch. 1985;403:197–204. doi: 10.1007/BF00584100. PubMed DOI
Uchida K, Moench I, Tamkus G, Lopatin AN. Small membrane permeable molecules protect against osmotically induced sealing of t-tubules in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2016;311:H229–H238. doi: 10.1152/ajpheart.00836.2015. PubMed DOI PMC
Vaughan PC, Howell JN, Eisenberg RS. The capacitance of skeletal muscle fibers in solutions of low ionic strength. J Gen Physiol. 1972;59:347–359. doi: 10.1085/jgp.59.3.347. PubMed DOI PMC
Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, Streich JH, et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res. 2012;111:402–414. doi: 10.1161/CIRCRESAHA.112.274530. PubMed DOI PMC